redis的zset的底层实现_Redis底层数据结构之 zset

本文详细介绍了Redis中的zset数据结构,特别是其底层实现skipList的工作原理。skipList在zset中用于存储按分数排序的元素,当元素数量超过一定阈值或元素长度超过限制时使用。它提供了O(logN)的增、删、查操作,并通过随机算法确定节点层数以平衡空间和速度。文章还解析了zskiplist和zskiplistNode的结构,以及增删改查的具体过程。
摘要由CSDN通过智能技术生成

zset是Redis提供的一个非常特别的数据结构,常用作排行榜等功能,以用户id为value,关注时间或者分数作为score进行排序。与其他数据结构相似,zset也有两种不同的实现,分别是zipList和skipList。zipList前面我们已经介绍过了,这里就不再介绍了。具体使用哪种结构进行存储,规则如下:

zipList:满足以下两个条件

[score,value]键值对数量少于128个;

每个元素的长度小于64字节;

skipList:不满足以上两个条件时使用跳表、组合了hash和skipList

hash用来存储value到score的映射,这样就可以在O(1)时间内找到value对应的分数;

skipList按照从小到大的顺序存储分数

skipList每个元素的值都是[socre,value]对

使用zipList的示意图如下所示:

使用跳表时的示意图:

跳表 skipList

跳表skipList在Redis中的运用场景只有一个,那就是作为有序列表zset的底层实现。跳表可以保证增、删、查等操作时的时间复杂度为O(logN),这个性能可以与平衡树相媲美,但实现方式上却更加简单,唯一美中不足的就是跳表占用的空间比较大,其实就是一种空间换时间的思想。跳表的结构如下所示:

Redis中跳表一个节点最高可以达到64层,一个跳表中最多可以存储2^64个元素。跳表中,每个节点都是一个skiplistNode,

每个跳表的节点也都会维护着一个score值,这个值在跳表中是按照从小到大的顺序排列好的。

跳表的结构定义如下所示:

typedf struct zskiplist{

//头节点

struct zskiplistNode *header;

//尾节点

struct zskiplistNode *tail;

// 跳表中元素个数

unsigned long length;

//目前表内节点的最大层数

int level;

}zskiplist;

header:指向跳表的头节点,通过这个指针可以直接找到表头,时间复杂度为O(1);

tail:指向跳表的尾节点,通过这个指针可以直接找到表尾,时间复杂度为o(1);

length:记录跳表的长度,即不包括头节点,整个跳表中有多少个元素;

level:记录当前跳表内,所有节点中层数最大的level;

zskiplist的示意图如下所示:

zskiplistNode的结构定义如下:

typedf struct zskiplistNode{

sds ele;// 具体的数据

double score;// 分数

struct zskiplistNode *backward;//后退指针

struct zskiplistLevel{

struct zskiplistNode *forward;//前进指针forward

unsigned int span;//跨度span

}level[];//层级数组 最大32

}zskiplistNode;

ele:真正的数据,每个节点的数据都是唯一的,但节点的分数score可以是一样的。两个相同分数score的节点是按照元素的字典序进行排列的;

score:各个节点中的数字是节点所保存的分数score,在跳表中,节点按照各自所保存的分数从小到大排列;

backward:用于从表尾向表头遍历,每个节点只有一个后退指针,即每次只能后退一步;

层级数组:这个数组中的每个节点都有两个属性,forward指向下一个节点,span跨度用来计算当前节点在跳表中的一个排名,这就为zset提供了一个查看排名的方法。数组中的每个节点中用1、2、3等字样标记节点的各个层,L1代表第一层,L2代表第二层,L3代表第三层;,以此类推;

skiplistNode的示意图如下所示:

增删改查

以下图为例,讲解一下skiplist的增删改查过程。

假设现在要查找7这个节点,步骤如下:

从head开始遍历,指针指向4这个节点,由于4<7,且同层的下一个指针指向NULL,所以下级一层;

跳到6节点所在的层,同理,6<7,且同层的下一个指针指向NULL,再下降一层;

此时到了第一层,第一层是一个双向链表,由于6<7,所以开始向后遍历,查找到7就返回,不然就返回NULL;

删除的过程前期与查找相似,先定位到元素所在的位置,再进行删除,最后更新一下指针、更新一下最高的层数。

先是判断这个 value 是否存在,如果存在就是更新的过程,如果不存在就是插入过程。在更新的过程是,如果找到了Value,先删除掉,再新增,这样的弊端是会做两次的搜索,在性能上来讲就比较慢了,在 Redis 5.0 版本中,Redis 的作者 Antirez 优化了这个更新的过程,目前的更新过程是如果判断这个 value是否存在,如果存在的话就直接更新,然后再调整整个跳跃表的 score 排序,这样就不需要两次的搜索过程。

比如要插入的值为 6

从 head 节点开始,先是在 head 开始降层来查找到最后一个比 6 小的节点;

等到查到最后一个比 6 小的节点的时候(假设为 5 );

然后需要引入一个随机层数算法来为这个节点随机地建立层数;

把这个节点插入进去以后,同时更新一遍最高的层数即可;

随机层数算法

int zslRandomLevel(void) {

int level = 1;

while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))

level += 1;

return (level

}

#define ZSKIPLIST_MAXLEVEL 32

#define ZSKIPLIST_P 0.25

总结

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值