python绘制实心圆_Python+OpenCV图像处理之圆检测

霍夫变换不仅可以用来检测直线,同样也可以用来检测圆

python实现

importcv2importnumpy as np__author__ = "boboa"

defdetect_circles_demo(image):

dst= cv2.pyrMeanShiftFiltering(image, 10, 100) #均值偏移滤波

cimage =cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)

circles= cv2.HoughCircles(cimage, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=40, minRadius=0, maxRadius=0)#整数化,#把circles包含的圆心和半径的值变成整数

circles =np.uint16(np.around(circles))for i incircles[0, :]:#画出外边圆

cv2.circle(image, (i[0], i[1]), i[2], (0, 255, 0), 2)#画出圆心

cv2.circle(image, (i[0], i[1]), 2, (0, 0, 255), 3)

cv2.imshow("circles", image)if __name__ == "__main__":

img= cv2.imread("image/circles.jpg")

cv2.namedWindow("input image", cv2.WINDOW_AUTOSIZE)

cv2.imshow("input image", img)

detect_circles_demo(img)

cv2.waitKey(0)

cv2.destroyAllWindows()

运行结果如下,效果并不是很好,可能是参数设置的不好,利用霍夫变换来检测圆很容易受到噪声的干扰,而且不能检测椭圆,找不到同心圆

cv2.HoughCircles(image, method, dp, minDist, circles, param1, param2, minRadius, maxRadius)

参数:

image:输入图像,必须是灰度图像

method:检测方法,常用CV_HOUGH_GRADIENT

dp:检测内侧圆心的累加器图像的分辨率于输入图像之比的倒数,如dp=1,累加器和输入图像具有相同的分辨率,如果dp=2,累计器便有输入图像一半那么大的宽度和高度

minDist: 两个圆心之间的最小距离

param1: 是method方法的参数,在CV_HOUGH_GRADIENT表示传入canny边缘检测的阈值

param2:对当前唯一的方法霍夫梯度法cv2.HOUGH_GRADIENT,它表示在检测阶段圆心的累加器阈值

它越小,就越可以检测到更多根本不存在的圆,而它越大的话,能通过检测的圆就更加接近完美的圆形了

minRadius:默认值0,圆半径的最小值

maxRadius:默认值0,圆半径的最大值

cv2.circle是画圆函数(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img

参数:img:源图像

center:圆心坐标

radius:圆的半径

color:设定圆的颜色

thickness:如果是正数,表示圆轮廓的粗细程度。如果是负数,表示要绘制实心圆

lineType:圆线条的类型

shift:圆心坐标和半径值中的小数位数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值