线材下料优化python算法_深度学习中的优化算法(Optimizer)理解与python实现

6bf25c984b259f4d5550f2e4440c49c3.png
本篇笔记将介绍深度学习中几种优化算法,SGD,Momentum,Nestrov,AdaGrad,RMSprop和Adam的理解以及简单的python实现

一、SGD

随机梯度下降法不用多说,每一个参数按照梯度的方向来减小以追求最小化损失函数

更新方式

4356077825a19dbc501996efcf25f6ed.png

Python实现

class 

二 、Momentum

在梯度下降的基础上加入了动量,即前面的梯度将会影响本轮的梯度方向

更新方式

f24c682bae7bf3dbf8d556f20371a862.png

Python实现

class 

三、Nestrov

Nestrov也是一种动量更新的方式,但是与普通动量方式不同的是,Nestrov为了加速收敛,提前按照之前的动量走了一步,然后求导后按着梯度再走一步

更新方式

914dd01e924cc56d0a255686456b4897.png

但是这样一来,就给实现带来了很大的麻烦,因为我们当前是在W的位置上,无法求得W+αv处的梯度,所以我们要进行一定改变。由于W与W+αv对参数来说没有什么区别,所以我们可以假设当前的参数就是W+αv。就像下图,按照Nestrov的本意,在0处应该先按照棕色的箭头走αv到1,然后求得1处的梯度,按照梯度走一步到2。

cc66318d41c48fd910a67da662395177.png

现在,我们假设当前的W就是1处的参数,但是,当前的动量v仍然是0处的动量,那么更新方式就可以写作

aae4cf88d0db7421cfdf63444e3e9d74.png

这样一来,动量v就更新到了下一步的2处的动量。但是下一轮的W相应的应该在3处,所以W还要再走一步αv,即完整的更新过程应该如下所示:

a603625cc5b17e5585bc592c2ff28456.png

第二行的v是第一行更新的结果,为了统一v的表示,更新过程还可以写作:

7050c74594e225cee9c459ebc32ed027.png

Python实现

class 

但是根据我看到的各个框架的代码,它们好像都把动量延迟更新了一步,所以实现起来有点不一样(或者说是上下两个式子的顺序进行了颠倒),我也找不到好的解释,但是在MNIST数据集上最终的结果要好于原来的实现。

Python实现

class 

四、AdaGrad

前面介绍了几种动量法,动量法旨在通过每个参数在之前的迭代中的梯度,来改变当前位置参数的梯度,在梯度稳定的地方能够加速更新的速度,在梯度不稳定的地方能够稳定梯度。

而AdaGrad则是一种完全不同的思路,它是一种自适应优化算法。它通过每个参数的历史梯度,动态更新每一个参数的学习率,使得每个参数的更新率都能够逐渐减小。前期梯度加大的,学习率减小得更快,梯度小的,学习率减小得更慢些。

更新过程为

992e13ebc252e223bea641c389497fd2.png

其中δ用于防止除零错

Python实现

class 

五、RMSprop

AdaGrad有个问题,那就是学习率会不断地衰退。这样就会使得很多任务在达到最优解之前学习率就已经过量减小,所以RMSprop采用了使用指数衰减平均来慢慢丢弃先前得梯度历史。这样一来就能够防止学习率过早地减小。

更新过程如下:

6665fe1269baf0fcfe5ae21a5a6c273f.png

Python实现

class 

六、Adam

Adam方法结合了上述的动量(Momentum)自适应(Adaptive),同时对梯度和学习率进行动态调整。如果说动量相当于给优化过程增加了惯性,那么自适应过程就像是给优化过程加入了阻力。速度越快,阻力也会越大。

Adam首先计算了梯度的一阶矩估计和二阶矩估计,分别代表了原来的动量和自适应部分

496324fe14d58797e00ad232fac51845.png

β_1 与 β_2 是两个特有的超参数,一般设为0.9和0.999

但是,Adam还需要对计算出的矩估计进行修正

b83dca82da70d4445c1c37aa7b8fdd13.png

其中t是迭代的次数,修正的原因在

Why is it important to include a bias correction term for the Adam optimizer for Deep Learning?​stats.stackexchange.com
b0c1b348da34fd849783c0dcdc08e11b.png

这个问题中有非常详细的解释。

简单来说就是由于m和v的初始指为0,所以第一轮的时候会非常偏向第二项,那么在后面计算更新值得时候根据β_1 与 β_2的初始值来看就会非常的大,需要将其修正回来。而且由于β_1 与 β_2很接近于1,所以如果不修正,对于最初的几轮迭代会有很严重的影响。

最后就是更新参数值,和AdaGrad几乎一样,只不过是用上了上面计算过的修正的矩估计

f60f52f1959bf18a72e632cc8f3c647d.png

python实现

class 

七、参考

《Deep Learning》花书

《深度学习入门——基于python的理论与实现》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值