题目描述
给定两个以字符串形式表示的非负整数 num1 和 num2,返回 num1 和 num2 的乘积,它们的乘积也表示为字符串形式。
示例 1:
输入: num1 = "2", num2 = "3"
输出: "6"
示例 2:
输入: num1 = "123", num2 = "456"
输出: "56088"
说明:
- num1 和 num2 的长度小于110。
- num1 和 num2 只包含数字 0-9。
- num1 和 num2 均不以零开头,除非是数字 0 本身。
- 不能使用任何标准库的大数类型(比如 BigInteger)或直接将输入转换为整数来处理。
解题思路
思路一:看到此题,第一反应是根据乘法竖式的规则来进行模拟计算。竖式运算思想,以num1
为123
,num2
为456
为例分析:
遍历 num2
每一位与 num1
进行相乘,将每一步的结果进行累加。
注意:num2
除了第一位的其他位与 num1
运算的结果需要 补0
复杂度分析
- 时间复杂度:O(M N)。M,N 分别为 num1 和 num2 的长度。
- 空间复杂度:O(M+N)。用于存储计算结果。
思路二:竖式优化
该算法是通过两数相乘时,乘数某位与被乘数某位相乘,与产生结果的位置的规律来完成。
具体规律如下:
- 乘数 num1 位数为 M,被乘数 num2 位数为 N, num1 x num2 结果 res 最大总位数为 M+N
- num1[i] x num2[j] 的结果为 tmp(位数为两位,"0x","xy"的形式),其第一位位于 res[i+j],第二位位于 res[i+j+1]。
结合下图更容易理解
复杂度分析(但是实际运行中此方法比第一个方法优化很多)
- 时间复杂度:O(M N)。M,N 分别为 num1 和 num2 的长度。
- 空间复杂度:O(M+N)。用于存储计算结果。
代码如下:
class Solution {
public:
string multiply(string num1, string num2) {
if(num1=="0"||num2=="0")//边界条件
return "0";
int n1=num1.size();
int n2=num2.size();
int temp[n1+n2]={0};//两数相乘,结果最多为n1+n2位 ; 结果最少为n1+n2-1位,此时结果最高位为零
for(int i=n1-1;i>=0;i--)
{
int a1=num1[i]-'0';
for(int j=n2-1;j>=0;j--)
{
int a2=num2[j]-'0';
int sum=temp[i+j+1]+a1*a2;//计算
temp[i+j+1]=sum%10;
temp[i+j]+=sum/10;
}
}
string res="";//最终结果
for(int i=0;i<n1+n2;i++)
{
if(i==0 && temp[i]==0)//两数相乘,结果最多为n1+n2位 ; 结果最少为n1+n2-1位,此时结果最高位为零
continue;
res+=to_string(temp[i]);
}
return res;
}
};
优化竖式执行结果:
参考:https://leetcode-cn.com/problems/multiply-strings/solution/you-hua-ban-shu-shi-da-bai-994-by-breezean/
有用点个赞哦~谢谢~