0/0型极限等于多少_两个重要极限的一点理解(下)

前言:对于第一个重要极限,我在上篇文章里已经提到过了写了一下我怎么理解的,链接如下:感兴趣的小伙伴可以观看一下:两个重要极限的一点理解(上)

今天的文章我想说说两个重要极限中第二个重要极限,如下

821a168cf883be4445486a9bcd16f705.png

正文:

1.为什么等于e?

对于为什么等于e我在这里简单推导一下

1536d14d5a9873e19beca35da927a2a5.png

如果是新手一枚建议这个极限的推导过程自己动笔推一下

用到了e^lnx=x,以及等价无穷小替换当x趋于0时,ln(1+x)~x

2.还有其他变形形式吗?

b5bf117b67b80ef75d2222c56e8f21de.png

这个应该是第二重要极限最常考的类型了吧

这到底跟上面的有哪些不同?

①x的趋向不同,一个趋向于0,一个趋向于∞

②一个以(1+1/x)为底,x为指数。另外一个以(1+x),1/x为指数

本质这两个都是1的∞次方型,1+后面这项与次幂互为倒数

eff68420f4c53109c9bd84886a54b4a5.png

3.真假美猴王环节

dd7673981826601728add7af2399988e.png

这两个留给大家思考吧,看看跟上述的两个有什么不同之处,另外求出来极限是多少

4.一般解法

想想上大学的时候,老师教给你是怎么利用第二重要极限凑的?

举几个例题,如果之前没学过,建议一起学习

1.

4c108083a6907eac4352316ccdfdfb46.png

①首先带入x趋于0,验证是1的∞次方型

②然后2x与1/x并不互为倒数,于是调整次幂变成1/2x

③次幂*1/2,所以要再2次幂平衡系数

我总结的略显粗糙,但大概的思路和做题步骤就是这样的

2.

beb0bc7be2f674180bb15f340bb6efa3.png

第二个题跟第一个题目难度一样,入门级别

3.

95c7dcb1a2a96694565b791c08b3ba62.png

第三个题目相比较于前两个题目难度上了一个台阶,由于底数形式并不是1+x的形式,我们需要些技巧来进行把1凑出来,长期关注我的小伙伴知道,+n-n这个技巧很重要,经观察分子与分母只差了个常数,所以-7,+14为了平衡系数,凑出来1了拆项,互为倒数套公式进行计算

4.

116281c4bbe76078bb69febe7a790768.png

这个看起来底数是三项,我们可以把后面的两项通分合成一项,然后与次幂凑互为倒数

再利用高次幂进行求极限,不要被它的外表所打倒

5.

b4766f21e1834d1140ccf5ab52076bc4.png

没有1,就创造1,+1-1,然后用第二重要极限化简,对于这个题目而言还用到了第一重要极限,这个对于新手来说难度蛮高的,好好解吧,相信通过这几个题目对这个解题思路熟练掌握了

5.进阶思路

还有别的思路?对于老师教的方法而言,在凑倒数时耗费了大量的时间,有另外一种思考方式,如下

e827a5784afd07556e4bd23277fec011.png

6.

fac6563be5204e6be29ca76b71a6b542.png

对于这个题目而言我想说的一点是

e1453e6b590b0a7a8173679491193e94.png

一定要区分开,这两个到底有什么不同之处,一个次幂是自变量,一个次幂为常数,所应用的公式也不一样,一个是高次幂而另外一个是重要极限,千万不要想当然

7.

c60ebe064c34bb5a440856b566ca57e9.png

这个题目需要你对等价无穷小替换的灵活掌握,不单单需要知道1-cosx等价于多少,还要对他的变形进行推导化简再利用第二重要极限进行求解

8.

cbc59af9ccb5800c16a3b52122388e7d.png

这个题目稍微难了些,相比较其他题目来说上手比较难,首先底数1+就没有,需要凑1,然后想到等价无穷小公式a^x-1~xlna,再用对数的性质进行求解化简

9.

21f97ef36b226885c5cf033cc85fd003.png

这样做对吗?答案肯定不对,首先你就不能人为改变先后求极限的顺序,需要同时对一个整体进行求极限

b6044ac5b4ca41e3a7b68453b00d3fad.png

假设题目这样做就可以,两个不同的自变量分时求极限

那么对于这个题而言正确的做法是什么?

eb8d9d19a0ccaa0500094ffc095c012c.png

还是用的e^lnx=x,然后用的倒代换还有等价无穷小替换

x-ln(1+x)~(1/2)*x^2,考研党建议熟记这个替换公式

10.

最后算个小公式吧

d5187f5dc4b6544a90d37ac1e335d1cb.png

上面是公式,下面是例题,可以看出d是无用的

那么我们用普通算法来验证一下这个结果对不对

ab585ecaec03849b8edbf37d98cf4120.png

一个是老师教的思路,一个是进阶思路,虽然看起来过程看起来一样长,但是缺省下了很长的时间不用来倒腾平衡次数了,你看第一种次幂我写了多长,容易出错,肯定有人问d为什么没用,d作为一个常数在用高次幂(x->∞)的时候,其结果都是最高次幂的系数之比,根本轮不到常数插手,高次幂其实就是分子分母同时除以最高次幂而已,所以d无用,任意常数值都可以,对结果不会造成影响,这个公式也可以记住,也可以不记,重要的是理解这个求解过程

8e7405d1d0d0687c5e0458fb67f92c39.gif

对文章有什么疑问或错误,欢迎与我一起讨论

如果觉得文章还不错,点个打赏分享再走吧

笔耕不辍,有你支持

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值