
关注微信公众号:专插本高等数学,解锁更多优质原创资源。
【写在前面的话】对于本号推出的一堂课系列, 主要针对刚开始复习的考生,或者某一个知识点还没有弄懂的考生。但是我们发现,对于已经在二轮或者冲刺阶段的考生,其实这个系列并不适合他们。所以,我们当即推出“一专题系列”。这些专题系列,能够更好帮助到这类考生做知识的整合、迁移,从而形成自己完整、健全的知识框架,应对一切插本高数问题。一专题系列会推出“求极限的方法”“极限、连续、导数定义辨析”“不定积分换元法的套路”“二阶导的神奇用法”“常数项级数中的放缩法应用”“极限中的分离常数”“在点和过点的切线方程辨析”等等。如此,希望能够帮助到更多的插本考生。另外,我们的一堂课系列会继续稳定更新。
求极限的六种方法
- 1. “抓大头”法。此法需要严格符合2个条件:①限制条件lim为n或者x趋向于∞(包括正无穷和负无穷)②分式极限(即分子分母类型)。则这种极限的题目的解法为:分子和分母分别保留影响分子和分母大小的那个数,最后约分即可。

2. “无穷小乘以有界,其值为无穷小”。无穷小,即为0。换句话说,一个极限为0的表达式,乘以一个有界的函数表达式(一般是arctanx,sinx,cosx等),其值就为0.

3. “等价无穷小”。记住,只有无穷小才可以等价,无穷大没有等价。常见的等价无穷小,用的很多且很秀的有:ln(1+x)~x, 1-cosx ~1/2x^2, e^x-1 ~x.其他基础的,在这里不再赘述。

4. “两个重要极限”。不用我说,你也要知道值得是哪两个,尤其是第二个还有2种形式。

5.“取对数”。对于指数类型的极限,如果不满足第二个重要极限,请一定要取对数。

- 6.“洛必达法则”。当你学完所有求极限的题目,可能脑海里只会留下洛必达法则,看到极限,洛就完了。但是,也请你注意,洛必达法则适用的条件:①分式极限,且是0/0,或者∞/∞。②尽量是乘除法。另外,请注意洛必达法则使用时,会跟等价无穷小联系在一块,同步使用。

其实对于求极限还有很多其他的方法,比如“倒代换”“夹逼准则”,但是这些都不在我们插本高数的考纲要求范围内。所以,请一定注意。掌握了以上六种方法。对于求极限的题目,则可高枕无忧。