面对近在眼前的高数考试
你是否感到了一丝紧张
别怕
接下来的12天
我们一起回顾《高等数学一》(I)
让小牛助你一臂之力
高数专题安排表
话不多说,接下来,请大家拿出纸笔。我们即将进入高数专题的第一期——极限的计算。
专题一:极限的计算
对应章节:课本第一章3-5节
约最高次幂法
当分子和分母的极限均为无穷大时,我们采用的方法是在分子、分母中同时除以x的最高次幂,然后再求极限。在这种情况下有如下规律:当分子、分母中x的最高次幂相同时,极限为分子、分母最高次幂的系数的比,是常数;当分子的次数高于分母的次数时,极限为无穷大;当分子的次数低于分母的次数时,极限为零。
例题
有理化法
当原式无法直接求解极限,但出现了两个根式的和或差时,对其进行有理化,从而将其转化为可以求出极限的形式。
例题
公式法
可以利用以下两个公式(重要极限)求极限的值。
第一个公式用于求一些分子或分母中含有三角函数的0/0型极限的值。在应用这个极限时,x的系数必须相同,如果不同,要想办法化成相同的。变形完成之后,要保证变量仍然趋近于0。
第二个公式用于求指数型的极限。在应用这个极限时,括号内的符号必须是加号,如果不是加号,要想办法化成加号;括号内的常数部分必须是1,如果不是,要想办法化成1;括号内的另一项部分必须与指数互为倒数,否则要想办法化成这种形式。变形完成之后,要保证指数部分仍然趋于∞。
当无法直接运用公式时,可以使用换元法,用另一个变量来表示原式。但要注意,新的变量趋向的值也可能发生改变。
例题
今天,你学会了吗?
撰稿 | 编辑:彭泓
责任编辑:林晨雨
初审:李洁明 滕飞
审核发布:周晶