时间序列分析matlab_SPSS--时间序列分析

本文介绍了时间序列分析的两种主要方法:时间序列分解法和模型解析法,详细阐述了时间序列的长期趋势、季节变动、循环变动和不规则变动,并通过案例分析了季节性分解在实际中的应用,探讨了ARIMA模型在处理非平稳时间序列中的作用。
摘要由CSDN通过智能技术生成

21c4c1e9d9de7ef2f36d35e9b53ffd34.png

一、时间序列分析简介

由于反映社会经济现象的大多数数据是按照时间顺序记录的,所以时间序列分析是研究社会经济现象的指标随时间变化的统计规律性的统计方法。为了研究事物在不同时间的发展状况,就要分析其随时间的推移的发展趋势,预测事物在未来时间的数量变化。因此学习时间序列分析方法是非常必要的。

1.1 时间序列分析的两种形式

1.1.1 第一种:时间序列分解法(传统方法)

时间序列分解是时间序列分析的传统方法,它的分析思路是将各种变动成分从时间序列中分解出来,并考量引起每种变动成分的原因。时间序列分解有很多优点:

1、分解后的时间序列更加直观简洁,避免各种变动成分之间互相影响;

2、可以分别测定每种变动的影响程度,从而提高预测精度。

四种变动:(时间序列分解)

  • 长期变动趋势(T)
  • 季节变动(S)
  • 循环变动(C)
  • 不规则变动(I)

以上四种变动就是时间序列数值变化的分解结果。有时这些变动会同时出现在一个时间序列里面,有时也可能只出现一种或几种,这是由引起各种变动的影响因素决定的。正是由于变动组合的不确定性,时间序列的数值变化才那么千变万化。四种变动与指标数值最终变动的关系可能是叠加关系,也可能是乘积关系。

叠加模型:四种变动之间是相互独立的关系 Y=T + S + C + I (Y表示指标数值的最终变动)

乘积模型:四种变动之间存在相互影响关系 Y= T*S*C*I

1.1.2 第二种:时间序列的模型解析方法

1)自回归(AR)模型、

表示为AR(p)

b24b88da1d5422f4b688c574b8c8b903.png

AR模型利用前期数值与后期数值的相关关系(自相关),建立包含前期数值和后期数值的回归方程,达到预测的目的,因此成为自回归过程。(白噪声可以理解成时间序列数值的随机波动,这些随机波动的总和等于0)

2)滑动平均(MA)模型、

表示为MA(q):

ed62f9f8289dfa78701525e56ec2dfd7.png

某个时间点的指标数值等于白噪声序列的加权和,如果回归方程中,白噪声只有两项,那么该移动平均过程为2阶移动平均过程MA(2)。比较自回归过程和移动平均过程可知,移动平均过程其实可以作为自回归过程的补充,解决自回归方差中白噪声的求解问题,两者的组合就成为自回归移动平均过程,称为ARMA模型。

3)自回归滑动平均(ARMA)模型

表示为ARMA(p,q),p是自回归阶数,q为移动平均阶数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值