【2025具身智能大模型·系列5】OmniH2O:卡内基梅隆与上海交大联手打造的全能人形机器人系统

系列篇章💥

No.文章
1【2025具身智能大模型·系列1】SpatialVLA:上海 AI Lab 联合上科大等推出的空间具身通用操作模型,赋能机器人3D空间理解
2【2025具身智能大模型·系列2】UniAct:清华大学、商汤等联合发布具身智能框架,用通用动作空间打破机器人控制瓶颈!
3【2025具身智能大模型·系列3】斯坦福HumanPlus:人形机器人实时控制与模仿学习的完美结合
4【2025具身智能大模型·系列4】GR00T N1 :英伟达推出全球首个开源通用人形机器人基础模型
5【2025具身智能大模型·系列5】OmniH2O:卡内基梅隆与上海交大联手打造的全能人形机器人系统


前言

在人工智能和机器人技术飞速发展的今天,人形机器人正逐渐从科幻走向现实。它们有望在各种复杂环境中为人类提供帮助和服务,但如何实现高效、灵活且自然的人机交互与控制,一直是该领域的关键挑战之一。近期,卡内基梅隆大学(CMU)和上海交通大学联合研发的 OmniH2O 项目,为这一问题带来了新的突破和思路。本文将深入探讨 OmniH2O 的技术原理、核心功能、应用场景以及如何快速上手使用,带您领略这一前沿技术的魅力。

一、项目概述

人形机器人的全身控制是一大挑战,现有研究多集中于下半身控制或上下半身解耦控制,难以实现灵巧操作与鲁棒运动的统一。此外,传统远程操作接口依赖昂贵设备,限制了大规模数据收集。OmniH2O 项目旨在开发一种基于学习的全身人形机器人远程操作和自主系统,使用运动学姿态作为通用控制接口,使人形机器人能像人类一样灵活操作,并通过远程操作演示学习或集成前沿模型实现完全自主,推动人形机器人技术发展。

OmniH2O 由卡内基梅隆大学和上海交通大学联合开发,团队汇聚了人工智能、机器人学、机器学习等多领域专业人才,凭借深厚技术积累和丰富研究经验,攻克了人形机器人远程操作和自主学习难题,为项目成功奠定基础。
在这里插入图片描述

二、技术原理

(一)全身远程操作技术

OmniH2O 采用了运动学姿态作为通用控制接口,使得人类可以通过多种方式实时远程操控全尺寸人形机器人。具体来说,操作者可以佩戴虚拟现实(VR)头显,通过身体动作来控制机器人的全身运动;也可以使用语音指令向机器人下达任务命令;此外,还可以利用 RGB 摄像头捕捉操作者的姿态信息,进而实现对机器人的远程操作。这种多样化的控制方式极大地提高了人机交互的灵活性和自然性,让操作者能够根据不同的任务需求和环境条件选择最适合的控制手段。

(二)强化学习与策略蒸馏

为了使机器人能够更好地适应复杂的现实任务,OmniH2O 开发了一套基于强化学习的模拟到实际(sim-to-real)管道。首先,通过对人类运动数据集的大规模重定向和增强,生成了大量的训练数据,这些数据涵盖了各种不同的动作模式和任务场景。然后,利用这些数据训练出一个特权教师策略,该策略在模拟环境中表现出色,能够完成复杂的任务。接着,通过策略蒸馏技术,将特权教师策略的知识迁移到实际部署策略中,使得机器人在真实环境中也能够实现高效、稳定的运动控制。此外,OmniH2O 还设计了专门的奖励函数,以增强机器人的鲁棒性和稳定性,使其能够在面对各种干扰和不确定性时仍能保持良好的性能。

(三)灵巧手控制技术

在人形机器人的操作任务中,手部的灵巧性至关重要。OmniH2O 在灵巧手控制方面也进行了深入的研究和开发。它使用 VR 估计的手部姿态,并基于逆运动学直接计算低级手部控制器的关节目标,从而实现了高精度的手部操作。这种控制方式能够精确地控制机器人的手指运动,使其能够完成诸如抓取、操作小物体等复杂的任务,大大提高了人形机器人的实用性和灵活性。

在这里插入图片描述

三、核心功能

(一)多种控制方式的融合

OmniH2O 支持多种控制方式的无缝融合,操作者可以根据任务的复杂程度和个人偏好选择最适合的控制方式。例如,在进行简单的移动任务时,可以使用语音指令快速下达命令;而在进行精细的操作任务时,可以借助 VR 头显和手部跟踪设备实现精准的控制。这种多种控制方式的融合不仅提高了人机交互的效率,还增强了操作的灵活性和适应性。

(二)自主学习与任务适应

OmniH2O 具备强大的自主学习能力,能够通过从远程操作演示中学习或与前沿模型(如 GPT-4o)集成来实现完全自主。这意味着机器人可以根据不同的任务需求自动调整其行为策略,无需人工干预。例如,在面对一个新的任务时,机器人可以先观察人类的操作演示,然后通过自主学习快速掌握任务的关键步骤和操作技巧,从而实现高效的任务完成。这种自主学习能力大大提高了人形机器人的智能化水平,使其能够更好地适应各种复杂多变的任务场景。

(三)高精度全身操作

OmniH2O 能够实现高精度的全身操作,支持复杂的双手操作任务。无论是在室内环境中进行日常物品的整理和操作,还是在野外环境中进行复杂的任务执行,机器人都能够表现出色。其高精度的操作能力得益于先进的运动控制算法和灵巧手控制技术,使得机器人在执行任务时能够精确地控制每一个关节和手指的运动,从而实现高效、准确的任务完成。

在这里插入图片描述

四、应用场景

(一)家庭服务

OmniH2O 可以在家庭环境中为人们提供各种服务,如家务劳动、物品搬运、陪伴老人和儿童等。它可以协助人们完成诸如打扫卫生、整理房间、搬运重物等繁琐的家务任务,减轻人们的劳动负担。同时,它还可以通过与人类的互动,为老人和儿童提供陪伴和娱乐,丰富他们的生活。

(二)工业生产

在工业生产领域,OmniH2O 可以作为辅助机器人,帮助工人完成一些危险、重复或精细的操作任务。例如,在电子制造工厂中,它可以协助工人进行电子元件的组装和检测;在汽车制造工厂中,它可以完成汽车零部件的搬运和安装等工作。其高精度的操作能力和自主学习能力使其能够快速适应不同的生产任务和工艺流程,提高生产效率和质量。

(三)医疗护理

OmniH2O 在医疗护理领域也具有广泛的应用前景。它可以协助医护人员进行患者护理、康复训练等工作。例如,在医院病房中,它可以为患者提供日常护理服务,如喂食、喂药、协助患者翻身等;在康复中心,它可以协助患者进行康复训练,通过精确的动作控制和实时反馈,帮助患者更好地恢复身体功能。

(四)野外探索与救援

OmniH2O 的高精度全身操作能力和自主学习能力使其能够在野外环境中进行探索和救援任务。它可以代替人类进入危险区域进行环境监测、资源勘探等工作,为人类提供重要的数据支持。在自然灾害发生时,它还可以协助救援人员进行搜索和救援工作,提高救援效率和成功率。

五、快速使用

确保已安装以下软件:Python 3.8、PyTorch、Isaac Gym、Legged Gym、RSL RL

(一)环境准备

1.创建 Python 环境

conda create -n omnih2o python=3.8
conda activate omnih2o
pip install torch torchvision torchaudio

2.安装 Isaac Gym

下载并安装 Isaac Gym
解压后运行:

cd isaacgym/python && pip install -e .

3.安装 OmniH2O

git clone https://github.com/LeCAR-Lab/human2humanoid.git
cd human2humanoid
pip install -r requirements.txt

(二)训练和运行

1.训练特权教师策略

python legged_gym/scripts/train_hydra.py --config-name=config_teleop task=h1:teleop run_name=OmniH2O_TEACHER

2.运行特权教师策略

python legged_gym/scripts/play_hydra.py --config-name=config_teleop task=h1:teleop load_run=OmniH2O_TEACHER checkpoint=XXXX

3.训练学生策略(Sim2Real)

python legged_gym/scripts/train_hydra.py --config-name=config_teleop task=h1:teleop run_name=OmniH2O_STUDENT train.distill=True

4.运行学生策略

python legged_gym/scripts/play_hydra.py --config-name=config_teleop task=h1:teleop load_run=OmniH2O_STUDENT checkpoint=XXXX

更多详细信息请查看开源地址:https://github.com/LeCAR-Lab/human2humanoid

六、结语

OmniH2O 项目以其通用灵巧的人形机器人远程操作和学习系统,为人工智能和机器人技术的发展带来了新的突破。它通过多种控制方式的融合、强化学习与策略蒸馏技术以及灵巧手控制技术,实现了人形机器人的高效、灵活和自主操作,为未来人形机器人的广泛应用奠定了坚实的基础。随着技术的不断进步和应用的不断拓展,OmniH2O 有望在家庭服务、工业生产、医疗护理、野外探索等多个领域发挥重要作用,为人类的生活和工作带来更多的便利和帮助。我们期待着这一前沿技术在未来能够取得更多的成果,推动人工智能和机器人技术迈向更高的台阶。

七、相关资源

  • 论文地址:https://omni.human2humanoid.com/resources/OmniH2O_paper.pdf
  • 项目网站:https://omni.human2humanoid.com/
  • 代码仓库:https://github.com/LeCAR-Lab/human2humanoid

在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索(CSDN博客之星|AIGC领域优质创作者)
📖专属社群:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,回复‘入群’ 即刻上车,获取邀请链接。
💘领取三大专属福利:1️⃣免费赠送AI+编程📚500本,2️⃣AI技术教程副业资料1套,3️⃣DeepSeek资料教程1套🔥(限前500人)
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我们,一起携手同行AI的探索之旅,开启智能时代的大门!

### 表达性人形机器人复现的方法技术路径 #### 技术背景 表达性人形机器人的开发涉及多个领域,包括自然语言处理、动作生成模型以及机器人控制系统。通过将预训练的文本到动作生成模型(如MDM)机器人硬件相结合,能够实现基于语音指令的人体动作模仿和执行[^1]。 #### 关键组件分析 为了构建类似的系统,需关注以下几个核心模块: 1. **文本到动作生成模型** 文本到动作生成的核心在于利用扩散模型(Diffusion Model),例如MDM (Human Motion Diffusion Model),它可以从输入的自然语言描述中生成对应的动作序列[^2]。该模型通常依赖大规模数据集进行训练,这些数据集中包含了标注好的人体姿态及其对应的语义描述。 2. **机器人运动规划** 动作目标一旦被生成,就需要由机器人平台上的运动控制器来追踪并完成实际操作。例如,在某些实验中提到的OmniH2O框架可以用于实时跟踪生成的目标轨迹,并将其映射至具体的关节角度变化上。 3. **软硬件集成** 将上述软件部分部署于物理设备之上还需要解决诸多工程挑战,比如传感器校准、延迟优化等问题。此外,还需考虑不同品牌型号间可能存在的兼容性差异。 #### 实践建议 对于希望重现此类项目的开发者而言,可遵循如下策略: - 学习并掌握相关理论基础,特别是深度学习中的变分自编码器(VAEs)及马尔科夫链蒙特卡洛方法(MCMC); - 获取公开可用的数据资源以供本地测试; - 参考已有的开源项目代码库作为起点, 如GitHub上有不少围绕motion generation topic展开的工作可供借鉴; - 如果条件允许的话,则尝试搭建简易版原型验证可行性后再逐步完善功能特性. ```python import torch from diffusers import AutoencoderKL # 加载预训练权重文件 vae = AutoencoderKL.from_pretrained("path/to/mdm_weights") def generate_motion(prompt): # 编码提示词为潜空间表示向量z z = encode_text_to_latent_space(prompt) # 使用VAE解码得到最终动作序列 generated_sequence = vae.decode(z).sample return generated_sequence.numpy() ``` 以上片段展示了如何调用一个假设性的函数`generate_motion()`来自动生成一段舞蹈或其他形式的身体活动表现给定一句简单的英语说明文字。 ---
评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值