本文由我司收集整编,推荐下载,如有疑问,请与我司联系
python
之
pandas
的基本使用(
1
)
2017/01/20
2749
一、
pandas
概述
pandas
:
pannel
data
analysis
(面板数据分
析)
。
pandas
是基于
numpy
构建的,为时间序列分析提供了很好的支持。
pandas
中
有两个主要的数据结构,一个是
Series
,另一个是
DataFrame
。
二、数据结构
Series
Series
类似于一维数组与字典
(map)
数据结构的结合。它由
一组数据和一组与数据相对应的数据标签(索引
index
)组成。这组数据和索引标签
的基础都是一个一维
ndarray
数组。可将
index
索引理解为行索引。
Series
的表现形
式为:索引在左,数据在右。
•
获取数据和索引:
ser_obj.index, ser_obj.values
•
预览数据:
ser_obj.head(n), ser_obj.tail(n)
Series
的使用代码示例:
import
pandas
as
pdfrom
pandas
import
Series,DataFrameprint
‘
用一维数组生成
Series’x = Series([1,2,3,4]) print x’’’0 11 22 33 4’’’print x.values # [1 2 3 4]#
默认标签
为
0
到
3
的序号
print x.index # RangeIndex(start=0, stop=4, step=1) print ‘
指定
Series
的
index’
#
可将
index
理解为行索引
x
=
Series([1,
2,
3,
4],
index
=
[‘a’,
‘b’,
‘d’,
‘c’])print
x’’’a
1b
2d
3c
4’’’print
x.index
#
Index([u’a’,
u’b’,
u’d’,
u’c’],
dtype=‘object’)print
x[‘a’]
#
通过行索引来取得元素值:
1x[‘d’]
=
6
#
通过行索引来
赋值
print x[[‘c’, ‘a’, ‘d’]] #
类似于
numpy
的花式索引
’’’c 4a 1d 6’’’print x[x 2] #
类
似于
numpy
的布尔索引
’’’d 6c 4’’’print ‘b’ in x #
类似于字典的使用:是否存在该索
引:
Trueprint
‘e’
in
x
#
Falseprint
‘
使用字典来生成
Series’data
=
{‘a’:1,
‘b’:2,
‘d’:3,
‘c’:4}x = Series(data)print x’’’a 1b 2c 4d 3’’’print ‘
使用字典生成
Series,
并指定额外的
index
,不匹配的索引部分数据为
NaN
。
’exindex
=
[‘a’,
‘b’,
‘c’,
‘e’]y
=
Series(data,
index = exindex) #
类似替换索引
print y’’’a 1.0b 2.0c 4.0e NaN’’’print ‘Series
相加,
相同行索引相加,不同行索引则数值为
NaN’print
x+y’’’a
2.0b
4.0c
8.0d
NaNe
NaN’’’print
‘
指定
Series/
索引的名字
’y.name
=
‘weight
of
letters’y.index.name
=
‘letter’print
y’’’lettera
1.0b
2.0c
4.0e
NaNName:
weight
of
letters,
dtype:
float64’’’print