python识别麻将牌_图像识别之麻将识别源码( 三 )

本文介绍了作者使用Python进行麻将图像识别的过程,包括利用谷歌云平台进行训练,使用SSD_MobileNet_v1模型,训练34k步,然后导出模型并进行测试,效果理想。最后讨论了将模型迁移至安卓设备的步骤和所需文件。
摘要由CSDN通过智能技术生成

图像识别之麻将识别源码( 三 )

未经过允许不得转载,转载请联系我,如何联系,点我头像。

连载已经完结,

百度网盘测试APP下载地址:

提取码:pkbl

先见效果图,另外我已经上传到了抖音视频,想看NB效果,可以点击链接直接观看:

本人从事机器学习有一些时间,感觉与一般做APP应用也没有啥差别,现在每天就是准备样本 ,调整参数,训练,验证结果。可能是我还没有达到哪些教授的水平能设计神经网络吧,感觉也就是一般马龙该做的杂七杂八事情。另外我更加关注移动设备AI的实现与效果,体验一样重要,识别的速度要快!

接下来的博客开始记录我研究过程,过程是:采集样本->标注->训练->测试。

上一期讲了如何进行标注,本期将开始训练。

本次使用的是谷歌云平台训练,实际上就是一个ubuntu 系统,不过现在有免费的300美金使用。部署好服务器后。将训练的文件上传到云服务器。需要的文件有这些。

然后执行训练

python object_detection/model_main.py --model_dir=/home/softboyes/digeai/majiang/training --pipeline_config_path=/home/softboyes/digeai/majiang/ssd_mobilenet_v1_pets.config

由于我使用的8cpu+20G内存 训练36小时训练了34k 步法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值