数理统计

写在前面

本文档是根据《数理统计(第二版)》(韦来生编著 科学出版社)、张立新教授上课的slides、课程笔记的内容整理而成,供自己复习查阅使用。

整理的时候,有一些内容略去了(以后有机会再填坑吧),详见教材。

Overview

数理统计的目的是从样本推断总体分布,称为统计推断(statistical inference)。

Statistical Inference
Sampling Distribution
Estimation
Point Estimation
Interval Estimation
Hypothesis Testing

Sampling Distribution

chapter 1 绪论

1.2 基本概念

假定有一批产品有10000件,其中有正品也有废品,为估计废品率,往往从中抽取一部分,如100件进行检查。此时

  • 这批10000件产品称为总体(population)

  • 其中的每件产品称为个体(individual)

  • 而从中抽取的100件产品称为样本(sample)

  • 样本中个体的数目称为样本大小/样本容量(sample size)

  • 而抽取样本的行为称作抽样(sampling)

我们关心个体上的某一些数量指标,总体可以看成由所有个体上的某种数量指标构成的集合。因此,总体可以用一个随机变量及其概率分布来描述

样本的两重性是说,样本既可以看成具体的数,又可以看成随机变量。在实施抽样后,它是具体的数;在实施抽样前,它被看成随机变量。

简单随机样本是指 X 1 , . . . , X n X_1,...,X_n X1,...,Xn独立同分布(independent identically distributed, i.i.d)。以下的样本均指的是简单随机样本。于是样本 X 1 , . . . , X n X_1,...,X_n X1,...,Xn的联合分布函数可以表示为
F ( x 1 , . . . , x n ) = F ( x 1 ) ⋅ F ( x 2 ) ⋅ ⋅ ⋅ F ( x n ) = ∏ i = 1 n F ( x i ) F(x_1,...,x_n)=F(x_1)·F(x_2)··· F(x_n)=\prod_{i=1}^{n}F(x_i) F(x1,...,xn)=F(x1)F(x2)F(xn)=i=1nF(xi)
F F F有密度 f f f,则其联合密度函数可以表示为
f ( x 1 , . . . , x n ) = f ( x 1 ) ⋅ f ( x 2 ) ⋅ ⋅ ⋅ f ( x n ) = ∏ i = 1 n f ( x i ) f(x_1,...,x_n)=f(x_1)·f(x_2)··· f(x_n)=\prod_{i=1}^{n}f(x_i) f(x1,...,xn)=f(x1)f(x2)f(xn)=i=1nf(xi)

1.3 统计量 Statistic

统计量是样本的函数,只与样本有关,与未知参数无关;具有两重性。

要求

  • 会判别
  • 会求分布 ⬅️样本的函数
常用统计量

样本均值 sample mean
X ˉ = 1 n ∑ i = 1 n X i \bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_i Xˉ=n1i=1nXi
样本方差 sample variance
S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S n 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 S^2=\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2\\ S_n^2=\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^2 S2=n11i=1n(XiXˉ)2Sn2=n1i=1n(XiXˉ)2
其中,称 S 2 S^2 S2为样本方差, S S S为样本标准差。

性质:

  • ∑ i = 1 n ( X i − X ˉ ) = 0 \sum_{i=1}^{n}(X_i-\bar{X})=0 i=1n(XiXˉ)=0
  • Y i = a X i + b Y_i=aX_i+b Yi=aXi+b,则 Y ˉ = a X ˉ + b \bar{Y}=a\bar{X}+b Yˉ=aXˉ+b S Y 2 = a 2 S X 2 S_Y^2=a^2S_X^2 SY2=a2SX2
  • ∀ c , ∑ i = 1 n ( X i − c ) 2 ≥ ∑ i = 1 n ( X i − X ˉ ) 2 \forall c,\sum_{i=1}^{n}(X_i-c)^2\geq\sum_{i=1}^{n}(X_i-\bar{X})^2 c,i=1n(Xic)2i=1n(XiXˉ)2

样本矩 sample moments

  • 样本k阶原点矩

a n k = 1 n ∑ i = 1 n X i k ,   k = 1 , 2 , 3 , . . . a n 1 = X ˉ a_{nk}=\frac{1}{n}\sum_{i=1}^n{X_i^k}, \space k=1,2,3,...\\ a_{n1}=\bar{X} ank=n1i=1nXik, k=1,2,3,...an1=Xˉ

  • 样本k阶中心矩

m n k = 1 n ∑ i = 1 n ( X i − X ˉ ) k ,   k = 2 , 3 , . . . m n 2 = S n 2 m_{nk} = \frac{1}{n}\sum_{i=1}^{n}{(X_i-\bar{X})^k}, \space k=2,3,...\\ m_{n2} = S_n^2 mnk=n1i=1n(XiXˉ)k, k=2,3,...mn2=Sn2

样本协方差 sample covariance
S X Y = 1 n ∑ i = 1 n ( X i − X ˉ ) ( Y i − Y ˉ ) S_{XY}=\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})(Y_i-\bar{Y}) SXY=n1i=1n(XiXˉ)(YiYˉ)
次序统计量及其有关统计量

  • 次序统计量 order statistics X ( 1 ) ≤ X ( 2 ) ≤ . . . ≤ X ( n ) X_{(1)}\leq X_{(2)}\leq ... \leq X_{(n)} X(1)X(2)...X(n)

  • 样本中位数 sample median
    m 1 2 = { X ( ( n + 1 ) / 2 ) n 为 奇 数 1 2 [ X ( n / 2 ) + X ( ( n + 1 ) / 2 ) ] n 为 偶 数 m_{\frac{1}{2}}=\left\{ \begin{array}{ll} &X_{((n+1)/2)} &n为奇数\\ &\frac{1}{2}[X_{(n/2)}+X_{((n+1)/2)}] &n为偶数 \end{array} \right. m21={X((n+1)/2)21[X(n/2)+X((n+1)/2)]nn

  • 样本p位数 sample p-fractile
    m p = X ( [ ( n + 1 ) p ] ) m_p=X_{([(n+1)p])} mp=X([(n+1)p])

  • 极值 extremum of sample

    • 极小值 X ( 1 ) X_{(1)} X(1)
    • 极大值 X ( n ) X_{(n)} X(n)
  • 样本极差 sample range
    R = X ( n ) − X ( 1 ) R=X_{(n)}-X_{(1)} R=X(n)X(1)

  • 样本变异系数

  • 样本偏度

  • 样本峰度

经验分布函数 empirical distribution function

用经验分布函数 F n ( x ) F_n(x) Fn(x)刻画总体分布函数 F ( x ) F(x) F(x)
F n ( x ) = 1 n # { X i : X i < x , i = 1 , 2 , . . . , n } F_n(x)=\frac{1}{n}\#\{X_i:X_i<x, i = 1,2,...,n\} Fn(x)=n1#{Xi:Xi<x,i=1,2,...,n}

性质

固定x, F n ( x ) F_n(x) Fn(x)是一个统计量。
F n ( x ) = 1 n ∑ i = 1 n Y i , Y i = I ( − ∞ , x ] X i P ( Y i = 1 ) = P ( X i ≤ x ) = F ( x ) , P ( Y i = 0 ) = P ( X i > x ) = 1 − F ( x ) Y i ∼ B ( 1 , F ( x ) ) , n F n ( x ) = ∑ i = 1 n Y i ∼ B ( n , p ) P ( F n ( x ) = k n ) = P ( ∑ i = 1 n Y i = k ) = C n k F ( x ) k ( 1 − F ( x ) ) n − k F_n(x)=\frac{1}{n}\sum_{i=1}^{n}Y_i, \quad Y_i=I_{(-\infty,x]}X_i \\ P(Y_i = 1)=P(X_i\leq x)=F(x),\quad P(Y_i = 0)=P(X_i > x)=1-F(x)\\ Y_i\sim B(1,F(x)),\quad nF_n(x)=\sum_{i=1}^{n}Y_i\sim B(n,p)\\ P(F_n(x)=\frac{k}{n})=P(\sum_{i=1}^{n}Y_i=k)=C_n^kF(x)^k(1-F(x))^{n-k} Fn(x)=n1i=1nYi,Yi=I(,x]XiP(Yi=1)=P(Xix)=F(x),P(Yi=0)=P(Xi>x)=1F(x)YiB(1,F(x)),nFn(x)=i=1nYiB(n,p)P(Fn(x)=nk)=P(i=1nYi=k)=CnkF(x)k(1F(x))nk

由二项分布性质, n → ∞ n\to\infty n

  • (Bernoulli大数定律) F n ( x ) → F ( x )   P F_n(x)\to F(x)\ P Fn(x)F(x) P

  • (Borel强大数定律) F n ( x ) → F ( x )   a . s . F_n(x)\to F(x)\ a.s. Fn(x)F(x) a.s.

  • (中心极限定理) n ( F n ( x ) − F ( x ) ) F ( x ) ( 1 − F ( x ) ) → N ( 0 , 1 )   L \frac{\sqrt{n}(F_n(x)-F(x))}{\sqrt{F(x)(1-F(x))}}\to N(0,1) \ \mathscr{L} F(x)(1F(x)) n (Fn(x)F(x))N(0,1) L

  • (格里汶科定理 Glivenko-Cantelli Theorem)
    P ( lim ⁡ n → ∞ sup ⁡ x ∈ R ∣ F n ( x ) − F ( x ) ∣ = 0 ) = 1 P(\lim_{n \to \infty}\sup_{x\in R}|F_n(x)-F(x)|=0)=1 P(nlimxRsupFn(x)F(x)=0)=1

chapter 2 抽样分布及若干预备知识

2.1 引言

抽样分布/统计量的分布(样本函数的分布) sampling distribution

2.2 正态总体 X ˉ \bar{X} Xˉ S 2 S^2 S2的分布

X 1 , . . . , X n   i . i . d . ∼ N ( a , σ 2 ) X_1,...,X_n\ i.i.d.\sim N(a,\sigma^2) X1,...,Xn i.i.d.N(a,σ2)

  • 线性组合分布
    ∑ k = 1 n c k X k ∼ N ( a ∑ k = 1 n c k , σ 2 ∑ k = 1 n c k 2 ) \sum_{k=1}^nc_kX_k \sim N(a\sum_{k=1}^nc_k, \sigma^2\sum_{k=1}^nc_k^2) k=1nckXkN(ak=1nck,σ2k=1nck2)

  • 线性变换 Y = A X Y=AX Y=AX

    Y 1 , . . . , Y n Y_1,...,Y_n Y1,...,Yn也是正态随机变量,其他结论略

  • 样本均值
    X ˉ = 1 n ∑ k = 1 n X k ∼ N ( a , σ 2 n ) \bar X=\frac{1}{n}\sum_{k=1}^nX_k \sim N(a, \frac{\sigma^2}{n}) Xˉ=n1k=1nXkN(a,nσ2)

  • 样本方差

    ( n − 1 ) S 2 σ 2 = ∑ i = 1 n ( X i − X ˉ ) 2 σ 2 ∼ χ n − 1 2 \frac{(n-1)S^2}{\sigma^2}=\sum_{i=1}^n\frac{(X_i-\bar{X})^2}{\sigma^2}\sim \chi^2_{n-1} σ2(n1)S2=i=1nσ2(XiXˉ)2χn12

  • X ˉ \bar X Xˉ S 2 S^2 S2独立

2.3 次序统计量的分布

单个次序统计量的分布

  • X ( m ) X_{(m)} X(m)
    F m ( x ) = P ( X ( m ) ≤ x ) = ∑ i = m n C n i ( F ( x ) ) i ( 1 − F ( x ) ) n − i f m ( x ) = m C n m f ( x ) ( F ( x ) ) m − 1 ( 1 − F ( x ) ) n − m F_m(x)=P(X_{(m)}\leq x)=\sum_{i=m}^nC_n^i(F(x))^i(1-F(x))^{n-i}\\ f_m(x)=mC_n^mf(x)(F(x))^{m-1}(1-F(x))^{n-m} Fm(x)=P(X(m)x)=i=mnCni(F(x))i(1F(x))nifm(x)=mCnmf(x)(F(x))m1(1F(x))nm

  • X ( 1 ) X_{(1)} X(1)
    F 1 ( x ) = P ( X ( 1 ) ≤ x ) = 1 − ( 1 − F ( x ) ) n f 1 ( x ) = n ( 1 − F ( x ) ) n − 1 f ( x ) F_1(x)=P(X_{(1)}\leq x)=1-(1-F(x))^{n}\\ f_1(x)=n(1-F(x))^{n-1}f(x) F1(x)=P(X(1)x)=1(1F(x))nf1(x)=n(1F(x))n1f(x)

  • X ( n ) X_{(n)} X(n)
    F n ( x ) = P ( X ( 1 ) ≤ x ) = ( F ( x ) ) n f n ( x ) = n ( F ( x ) ) n − 1 f ( x ) F_n(x)=P(X_{(1)}\leq x)=(F(x))^{n}\\ f_n(x)=n(F(x))^{n-1}f(x) Fn(x)=P(X(1)x)=(F(x))nfn(x)=n(F(x))n1f(x)

多个次序统计量的联合分布

  • ( X ( 1 ) , . . . , X ( n ) ) (X_{(1)},...,X_{(n)}) (X(1),...,X(n))
    g ( x 1 , . . . , x n ) = { n ! f ( x 1 ) f ( x 2 ) . . . f ( x n ) x 1 < x 2 < . . . < x n 0 其 他 g(x_1,...,x_n)=\left\{ \begin{array}{ll} &n!f(x_1)f(x_2)...f(x_n) &x_1<x_2<...<x_n\\ &0 &其他 \end{array} \right. g(x1,...,xn)={n!f(x1)f(x2)...f(xn)0x1<x2<...<xn

  • ( X ( i ) , X ( j ) ) (X_{(i)},X_{(j)}) (X(i),X(j))
    f i j ( x , y ) = { n ! ( i − 1 ) ! ( j − i − 1 ) ! ( n − j ) ! ( F ( x ) ) i − 1 ( F ( y ) − F ( x ) ) j − i − 1 ( 1 − F ( y ) ) n − j f ( x ) f ( y ) x < y 0 其 他 f_{ij}(x,y)=\left\{ \begin{array}{ll} &\frac{n!}{(i-1)!(j-i-1)!(n-j)!}(F(x))^{i-1}(F(y)-F(x))^{j-i-1}(1-F(y))^{n-j}f(x)f(y) &x<y\\ &0 &其他 \end{array} \right. fij(x,y)={(i1)!(ji1)!(nj)!n!(F(x))i1(F(y)F(x))ji1(1F(y))njf(x)f(y)0x<y

  • ( X ( 1 ) , X ( n ) ) (X_{(1)},X_{(n)}) (X(1),X(n))
    f ( x , y ) = { n ( n − 1 ) ( F ( y ) − F ( x ) ) n − 2 f ( x ) f ( y ) x < y 0 其 他 f(x,y)=\left\{ \begin{array}{ll} &n(n-1)(F(y)-F(x))^{n-2}f(x)f(y) &x<y\\ &0 &其他 \end{array} \right. f(x,y)={n(n1)(F(y)F(x))n2f(x)f(y)0x<y

样本极差的分布

  • R = X ( n ) − X ( 1 ) R=X_{(n)}-X_{(1)} R=X(n)X(1)

均匀分布情形,设随机变量 X 1 , . . . , X n   i . i . d . ∼ U ( 0 , 1 ) X_1,...,X_n\ i.i.d.\sim U(0,1) X1,...,Xn i.i.d.U(0,1)

  • X ( m ) X_{(m)} X(m)
    f m ( x ) = { m C n m x m − 1 ( 1 − x ) n − m 0 < x < 1 0 其 他 f_m(x)=\left\{ \begin{array}{ll} &mC_n^mx^{m-1}(1-x)^{n-m}&0<x<1\\ &0 &其他 \end{array} \right. fm(x)={mCnmxm1(1x)nm00<x<1

  • ( X ( 1 ) , . . . , X ( n ) ) (X_{(1)},...,X_{(n)}) (X(1),...,X(n))
    g ( x 1 , . . . , x n ) = { n ! 0 < x 1 < . . . < x n < 1 0 其 他 g(x_1,...,x_n)=\left\{ \begin{array}{ll} &n!&0<x_1<...<x_n<1\\ &0 &其他 \end{array} \right. g(x1,...,xn)={n!00<x1<...<xn<1

  • ( X ( i ) , X ( j ) ) (X_{(i)},X_{(j)}) (X(i),X(j))
    f i j ( x , y ) = { n ! ( i − 1 ) ! ( j − i − 1 ) ! ( n − j ) ! x i − 1 ( y − x ) j − i − 1 ( 1 − y ) n − j 0 < x < y < 1 0 其 他 f_{ij}(x,y)=\left\{ \begin{array}{ll} &\frac{n!}{(i-1)!(j-i-1)!(n-j)!}x^{i-1}(y-x)^{j-i-1}(1-y)^{n-j} &0<x<y<1\\ &0 &其他 \end{array} \right. fij(x,y)={(i1)!(ji1)!(nj)!n!xi1(yx)ji1(1y)nj00<x<y<1

  • ( X ( 1 ) , X ( n ) ) (X_{(1)},X_{(n)}) (X(1),X(n))
    f ( x , y ) = { n ( n − 1 ) ( F ( y ) − F ( x ) ) n − 2 f ( x ) f ( y ) x < y 0 其 他 f(x,y)=\left\{ \begin{array}{ll} &n(n-1)(F(y)-F(x))^{n-2}f(x)f(y) &x<y\\ &0 &其他 \end{array} \right. f(x,y)={n(n1)(F(y)F(x))n2f(x)f(y)0x<y

  • R = X ( n ) − X ( 1 ) R=X_{(n)}-X_{(1)} R=X(n)X(1)
    g R ( r ) = { n ( n − 1 ) r n − 2 ( 1 − r ) 0 < r < 1 0 其 他 g_R(r)=\left\{ \begin{array}{ll} &n(n-1)r^{n-2}(1-r) &0<r<1\\ &0 &其他 \end{array} \right. gR(r)={n(n1)rn2(1r)00<r<1

2.4 χ 2 \chi^2 χ2分布 Chi-Square Distribution

构造性定义

  • n个独立标准正态分布平方和

  • X 1 , . . . , X n   i . i . d . ∼ N ( 0 , 1 ) X_1,...,X_n\ i.i.d.\sim N(0,1) X1,...,Xn i.i.d.N(0,1),则

    ξ = ∑ i = 1 n X i 2 ∼ χ 2 ( n ) ∼ Γ ( n 2 , 1 2 ) \xi=\sum_{i=1}^nX_i^2\sim \chi^2(n)\sim \Gamma(\frac{n}{2},\frac{1}{2}) ξ=i=1nXi2χ2(n)Γ(2n,21)

pdf
g n ( x ) = { ( 1 2 ) n 2 1 Γ ( n 2 ) x n 2 − 1 e − x 2 x > 0 0 x ≤ 0 g_n(x)=\left\{ \begin{array}{ll} &(\frac{1}{2})^{\frac{n}{2}}\frac{1}{\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-\frac{x}{2}} &x>0\\ &0 &x\leq 0 \end{array} \right. gn(x)={(21)2nΓ(2n)1x2n1e2x0x>0x0

图,上侧 α \alpha α分位数

性质

  • E ξ = n E\xi=n Eξ=n
  • D ξ = 2 n D\xi=2n Dξ=2n
  • 可加性,若 ξ 1 ∼ χ n 2 , ξ 2 ∼ χ m 2 \xi_1\sim\chi_n^2,\xi_2\sim\chi_m^2 ξ1χn2,ξ2χm2,则 ξ 1 + ξ 2 ∼ χ n + m 2 \xi_1+\xi_2\sim\chi_{n+m}^2 ξ1+ξ2χn+m2

t t t分布

构造性定义

  • X ∼ N ( 0 , 1 ) , Y ∼ χ n 2 X\sim N(0,1),Y\sim\chi_n^2 XN(0,1),Yχn2且相互独立,则

    T = X Y / n ∼ t ( n ) T=\frac{X}{\sqrt{Y/n}}\sim t(n) T=Y/n Xt(n)

pdf
t n ( x ) = Γ ( n + 1 2 ) Γ ( n 2 ) n π ( 1 + x 2 n ) − n + 1 2 t_n(x)=\frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{n\pi}}(1+\frac{x^2}{n})^{-\frac{n+1}{2}} tn(x)=Γ(2n)nπ Γ(2n+1)(1+nx2)2n+1
图,双侧上 α \alpha α分位数

性质

  • E T = 0 , n ≥ 2 ET=0,n\geq2 ET=0,n2
  • D T = n ( n − 2 ) 2 , n ≥ 3 DT=\frac{n(n-2)}{2},n\geq 3 DT=2n(n2),n3
  • n → ∞ , T → N ( 0 , 1 ) n\to\infty,T\to N(0,1) nTN(0,1)

特例

  • t = 1 , t 1 ( x ) = 1 π ( 1 + x 2 ) t=1,t_1(x)=\frac{1}{\pi(1+x^2)} t=1,t1(x)=π(1+x2)1为柯西(Cauchy)分布

F分布

构造性定义

  • 两个独立的 χ 2 \chi^2 χ2分布除以自由度之商

  • X ∼ χ m 2 , Y ∼ χ n 2 X\sim \chi_m^2,Y\sim\chi_n^2 Xχm2,Yχn2且相互独立,则
    F = X / m Y / n ∼ F ( m , n ) F=\frac{X/m}{Y/n}\sim F(m,n) F=Y/nX/mF(m,n)

pdf
f m , n ( x ) = { Γ ( m + n 2 ) Γ ( m 2 ) + Γ ( n 2 ) m m 2 n n 2 x m 2 − 1 ( n + m x ) − m + n 2 x > 0 0 其 他 f_{m,n}(x)=\left\{ \begin{array}{ll} &\frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})+\Gamma(\frac{n}{2})}m^{\frac{m}{2}}n^{\frac{n}{2}}x^{\frac{m}{2}-1}(n+mx)^{-\frac{m+n}{2}} &x>0\\ &0 &其他 \end{array} \right. fm,n(x)={Γ(2m)+Γ(2n)Γ(2m+n)m2mn2nx2m1(n+mx)2m+n0x>0
图,上侧 α \alpha α分位数

性质

  • Z ∼ F ( m , n ) Z\sim F(m,n) ZF(m,n),则 1 Z ∼ F ( n , m ) \frac{1}{Z}\sim F(n,m) Z1F(n,m)
  • E Z = n n − 2 , n > 2 EZ=\frac{n}{n-2},n>2 EZ=n2n,n>2
  • D Z = 2 n 2 ( m + n − 2 ) m ( n − 2 ) 2 ( n − 4 ) , n > 4 DZ=\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)},n>4 DZ=m(n2)2(n4)2n2(m+n2),n>4
  • T ∼ t ( n ) T\sim t(n) Tt(n),则 T 2 ∼ F ( 1 , n ) T^2\sim F(1,n) T2F(1,n)
  • F m , n ( 1 − α ) = 1 F n , m ( α ) F_{m,n}(1-\alpha)=\frac{1}{F_{n,m}(\alpha)} Fm,n(1α)=Fn,m(α)1

Γ \Gamma Γ分布

X ∼ Γ ( α , λ ) X\sim\Gamma(\alpha,\lambda) XΓ(α,λ)

Pdf
p ( x ; α , λ ) = { λ α Γ ( α ) x α − 1 e − λ x x > 0 0 x ≤ 0 p(x;\alpha,\lambda)=\left\{ \begin{array}{ll} &\frac{\lambda^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x} &x>0\\ &0 &x\leq0 \end{array} \right. p(x;α,λ)={Γ(α)λαxα1eλx0x>0x0
性质

  • 特征函数
    E e i t X = ϕ ( t ) = ( 1 − t λ ) − α Ee^{itX}=\phi(t)=(1-\frac{t}{\lambda})^{-\alpha} EeitX=ϕ(t)=(1λt)α

  • k阶矩 会求
    E X k = ( α + k − 1 ) ! λ k ( α − 1 ) ! EX^k=\frac{(\alpha+k-1)!}{\lambda^k(\alpha-1)!} EXk=λk(α1)!(α+k1)!

  • E X = α λ , D X = α λ 2 EX=\frac{\alpha}{\lambda},\quad DX=\frac{\alpha}{\lambda^2} EX=λα,DX=λ2α

  • 关于 α \alpha α的可加性,若 X 1 ∼ Γ ( α 1 , λ ) , X 2 ∼ Γ ( α 2 , λ ) X_1\sim \Gamma(\alpha_1,\lambda),X_2\sim \Gamma(\alpha_2,\lambda) X1Γ(α1,λ),X2Γ(α2,λ),则 X 1 + X 2 ∼ Γ ( α 1 + α 2 , λ ) X_1+X_2\sim \Gamma(\alpha_1+\alpha_2,\lambda) X1+X2Γ(α1+α2,λ)

  • 关于 λ \lambda λ的可伸缩性,若 X ∼ Γ ( α , λ ) X\sim \Gamma(\alpha,\lambda) XΓ(α,λ),则 k X ∼ Γ ( α , λ k ) kX\sim \Gamma(\alpha,\frac{\lambda}{k}) kXΓ(α,kλ)

特例

  • Γ ( 1 , λ ) = E ( λ ) \Gamma(1,\lambda)=E(\lambda) Γ(1,λ)=E(λ)
  • Γ ( n 2 , 1 2 ) = χ n 2 \Gamma(\frac{n}{2},\frac{1}{2})=\chi_n^2 Γ(2n,21)=χn2

Beta分布

X ∼ β ( a , b ) X\sim\beta(a,b) Xβ(a,b)

Pdf
p ( x ; a , b ) = { Γ ( a + b ) Γ ( a ) Γ ( b ) x a − 1 ( 1 − x ) b − 1 0 < x < 1 0 其 他 p(x;a,b)=\left\{ \begin{array}{ll} &\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1} &0<x<1\\ &0 &其他 \end{array} \right. p(x;a,b)={Γ(a)Γ(b)Γ(a+b)xa1(1x)b100<x<1
性质

  • k阶矩
    E X k = Γ ( a + b ) Γ ( a + k ) Γ ( a ) Γ ( a + b + k ) EX^k=\frac{\Gamma(a+b)\Gamma(a+k)}{\Gamma{(a)}\Gamma(a+b+k)} EXk=Γ(a)Γ(a+b+k)Γ(a+b)Γ(a+k)

  • E X = a a + b , D X = a b ( a + b ) 2 ( a + b + 1 ) EX=\frac{a}{a+b},\quad DX=\frac{ab}{(a+b)^2(a+b+1)} EX=a+ba,DX=(a+b)2(a+b+1)ab

特例

  • β ( 1 , 1 ) = U ( 0 , 1 ) \beta(1,1)=U(0,1) β(1,1)=U(0,1)

Beta-II分布/Z分布

X ∼ Z ( a , b ) X\sim Z(a,b) XZ(a,b)

Pdf
p ( x ; a , b ) = { Γ ( a + b ) Γ ( a ) Γ ( b ) x a − 1 ( 1 + x ) a + b x > 0 , a , b > 0 0 其 他 p(x;a,b)=\left\{ \begin{array}{ll} &\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\frac{x^{a-1}}{(1+x)^{a+b}} &x>0, a,b>0\\ &0 &其他 \end{array} \right. p(x;a,b)={Γ(a)Γ(b)Γ(a+b)(1+x)a+bxa10x>0,a,b>0
性质

  • k阶矩
    E X k = Γ ( a + k ) Γ ( b − k ) Γ ( a ) Γ ( b ) EX^k=\frac{\Gamma(a+k)\Gamma(b-k)}{\Gamma{(a)}\Gamma(b)} EXk=Γ(a)Γ(b)Γ(a+k)Γ(bk)

  • E X = a b − 1 , b > 1 EX=\frac{a}{b-1},b>1 EX=b1a,b>1

关系

  • 与Z分布
    • Y ∼ β ( a , b ) Y\sim\beta(a,b) Yβ(a,b),则 Y 1 − Y ∼ Z ( a , b ) \frac{Y}{1-Y}\sim Z(a,b) 1YYZ(a,b)
    • X ∼ Z ( a , b ) X \sim Z(a,b) XZ(a,b),则 X 1 + X ∼ β ( a , b ) \frac{X}{1+X}\sim \beta(a,b) 1+XXβ(a,b)
  • Γ \Gamma Γ分布, X 1 ∼ Γ ( α 1 , λ ) , X 2 ∼ Γ ( α 2 , λ ) X_1\sim\Gamma(\alpha_1,\lambda),X_2\sim\Gamma(\alpha_2,\lambda) X1Γ(α1,λ),X2Γ(α2,λ)
    • X 1 + X 2 ∼ Γ ( α 1 + α 2 , λ ) X_1+X_2\sim\Gamma(\alpha_1+\alpha_2,\lambda) X1+X2Γ(α1+α2,λ)
    • X 1 X 2 ∼ Z ( α 1 , α 2 ) \frac{X_1}{X_2}\sim Z(\alpha_1,\alpha_2) X2X1Z(α1,α2)
    • X 1 X 1 + X 2 ∼ β ( α ! , α 2 ) \frac{X_1}{X_1+X_2}\sim \beta(\alpha_!,\alpha_2) X1+X2X1β(α!,α2)
  • 与F分布, F ∼ F ( m , n ) F\sim F(m,n) FF(m,n)
    • m n F ∼ Z ( m 2 , n 2 ) \frac{m}{n}F\sim Z(\frac{m}{2},\frac{n}{2}) nmFZ(2m,2n)

重要结论

X 1 , . . . , X n   i . i . d . ∼ N ( a , σ 2 ) X_1,...,X_n\ i.i.d.\sim N(a,\sigma^2) X1,...,Xn i.i.d.N(a,σ2),则
∑ i = 1 n ( X i − a ) 2 σ 2 ∼ χ n 2 \sum_{i=1}^n\frac{(X_i-a)^2}{\sigma^2}\sim \chi_n^2 i=1nσ2(Xia)2χn2
注意
∑ i = 1 n ( X i − X ˉ ) 2 σ 2 ∼ χ n − 1 2 \sum_{i=1}^n\frac{(X_i-\bar X)^2}{\sigma^2}\sim \chi_{n-1}^2 i=1nσ2(XiXˉ)2χn12
X 1 , . . . , X n   i . i . d . ∼ N ( a , σ 2 ) X_1,...,X_n\ i.i.d.\sim N(a,\sigma^2) X1,...,Xn i.i.d.N(a,σ2),则
X ˉ ∼ N ( a , σ 2 n ) ⇒ X ˉ − a σ / n ∼ N ( 0 , 1 ) ( n − 1 ) S 2 σ 2 ∼ χ n − 1 2 ⇒ T = n ( X ˉ − a ) S ∼ t ( n − 1 ) \bar X\sim N(a,\frac{\sigma^2}{n})\Rightarrow\frac{\bar X-a}{\sigma/\sqrt{n}}\sim N(0,1)\\ \frac{(n-1)S^2}{\sigma^2}\sim\chi_{n-1}^2\\ \Rightarrow T=\frac{\sqrt{n}(\bar X-a)}{S}\sim t(n-1) XˉN(a,nσ2)σ/n XˉaN(0,1)σ2(n1)S2χn12T=Sn (Xˉa)t(n1)
X 1 , . . . , X m   i . i . d . ∼ N ( a 1 , σ 2 ) , Y 1 , . . . , Y n   i . i . d . ∼ N ( a 2 , σ 2 ) X_1,...,X_m\ i.i.d.\sim N(a_1,\sigma^2),Y_1,...,Y_n\ i.i.d.\sim N(a_2,\sigma^2) X1,...,Xm i.i.d.N(a1,σ2),Y1,...,Yn i.i.d.N(a2,σ2)且相互独立,则
X ˉ ∼ N ( a 1 , σ 2 m ) , Y ˉ ∼ N ( a 2 , σ 2 n ) ⇒ X ˉ − Y ˉ ∼ N ( a 1 − a 2 , m + n m n σ 2 ) ( m − 1 ) S 1 2 σ 2 ∼ χ m − 1 2 , ( n − 1 ) S 2 2 σ 2 ∼ χ n − 1 2 ⇒ 1 σ 2 [ ( m − 1 ) S 1 2 + ( n − 1 ) S 2 2 ] ∼ χ m + n − 2 2 ⇒ T = X ˉ − Y ˉ − ( a 1 − a 2 ) S w 2 m n m + n ∼ t ( m + n − 2 ) , 其 中 S w 2 = 1 m + n − 2 [ ( m − 1 ) S 1 2 + ( n − 1 ) S 2 2 ] \bar X\sim N(a_1,\frac{\sigma^2}{m}),\bar Y\sim N(a_2,\frac{\sigma^2}{n}) \Rightarrow \bar X-\bar Y\sim N(a_1-a_2,\frac{m+n}{mn}\sigma^2)\\ \frac{(m-1)S_1^2}{\sigma^2}\sim\chi_{m-1}^2,\frac{(n-1)S_2^2}{\sigma^2}\sim\chi_{n-1}^2 \Rightarrow \frac{1}{\sigma^2}[(m-1)S_1^2+(n-1)S_2^2]\sim\chi_{m+n-2}^2\\ \Rightarrow T=\frac{\bar X-\bar Y-(a_1-a_2)}{S_w^2}\sqrt{\frac{mn}{m+n}}\sim t(m+n-2),\\其中S_w^2=\frac{1}{m+n-2}[(m-1)S_1^2+(n-1)S_2^2] XˉN(a1,mσ2),YˉN(a2,nσ2)XˉYˉN(a1a2,mnm+nσ2)σ2(m1)S12χm12,σ2(n1)S22χn12σ21[(m1)S12+(n1)S22]χm+n22T=Sw2XˉYˉ(a1a2)m+nmn t(m+n2),Sw2=m+n21[(m1)S12+(n1)S22]
X 1 , . . . , X m   i . i . d . ∼ N ( a 1 , σ 1 2 ) , Y 1 , . . . , Y n   i . i . d . ∼ N ( a 2 , σ 2 2 ) X_1,...,X_m\ i.i.d.\sim N(a_1,\sigma_1^2),Y_1,...,Y_n\ i.i.d.\sim N(a_2,\sigma_2^2) X1,...,Xm i.i.d.N(a1,σ12),Y1,...,Yn i.i.d.N(a2,σ22)且相互独立,则
( m − 1 ) S 1 2 σ 1 2 ∼ χ m − 1 2 , ( n − 1 ) S 2 2 σ 2 2 ∼ χ n − 1 2 ⇒ F = S 1 2 / σ 1 2 S 2 2 / σ 2 2 ∼ F ( m − 1 , n − 1 ) , 其 中 S w 2 = 1 m + n − 2 [ ( m − 1 ) S 1 2 + ( n − 1 ) S 2 2 ] \frac{(m-1)S_1^2}{\sigma_1^2}\sim\chi_{m-1}^2,\frac{(n-1)S_2^2}{\sigma_2^2}\sim\chi_{n-1}^2\\ \Rightarrow F=\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}\sim F(m-1,n-1),\\其中S_w^2=\frac{1}{m+n-2}[(m-1)S_1^2+(n-1)S_2^2] σ12(m1)S12χm12,σ22(n1)S22χn12F=S22/σ22S12/σ12F(m1,n1),Sw2=m+n21[(m1)S12+(n1)S22]
X 1 , . . . , X n   i . i . d . ∼ E ( λ ) ∼ Γ ( 1 , λ ) X_1,...,X_n\ i.i.d.\sim E(\lambda)\sim \Gamma(1,\lambda) X1,...,Xn i.i.d.E(λ)Γ(1,λ),则
2 λ n X ˉ = 2 λ ∑ i = 1 n X i ∼ Γ ( n , 1 2 ) ∼ χ 2 n 2 2\lambda n\bar X=2\lambda\sum_{i=1}^nX_i\sim\Gamma(n,\frac{1}{2})\sim\chi_{2n}^2 2λnXˉ=2λi=1nXiΓ(n,21)χ2n2

2.6 指数族 exponential family

2.7 充分统计量 sufficient statistic

T = T ( X ) T=T(X) T=T(X)为一统计量,若在已知 T T T的条件下,样本 X X X的条件分布于参数 θ \theta θ无关,则称 T ( X ) T(X) T(X) θ \theta θ的充分统计量。

因子分解定理——充分性的判别准则

2.8 完全统计量 complete statistic

Estimation

参数估计 Parameter Estimation

参数估计是统计推断的一种重要形式。参数估计问题常有两类:点估计和区间估计。点估计就是用样本函数的一个具体数值 g ^ ( X ) \hat{g}(\boldsymbol X) g^(X)去估计一个未知参数 g ( θ ) g(\theta) g(θ)区间估计就是用样本函数的两个值构成的区间 [ g 1 ^ ( X ) , g 2 ^ ( X ) ] [\hat{g_1}(\boldsymbol{X}),\hat{g_2}(\boldsymbol{X})] [g1^(X),g2^(X)]去估计未知参数的取值范围。大多数情况下, g ( θ ) = θ g(\theta)=\theta g(θ)=θ.

chpater 3 点估计 Point Estimation

X 1 , . . . , X n X_1, ..., X_n X1,...,Xn是从总体 F F F中抽取的简单随机样本。

一、评价估计量好坏的标准

无偏性 unbiased estimation

有效性 efficiency

相合性 consistent estimation

均方误差 mean square error

有效无偏估计

图片

二、矩法 Method of Moments

1. 原理

参数 θ \theta θ可以表示为总体分布的某些矩的函数 θ = ( α 1 , α 2 , . . . α k ; μ 2 , . . . , μ s ) \theta=(\alpha_1,\alpha_2,...\alpha_k;\mu_2,...,\mu_s) θ=(α1,α2,...αk;μ2,...,μs),用样本矩替代总体矩,得到 θ ^ = h ( a n 1 , a n 2 , . . . , a n k ; m n 2 , . . . , m n s ) \hat{\theta}=h(a_{n1},a_{n2},...,a_{nk};m_{n2},...,m_{ns}) θ^=h(an1,an2,...,ank;mn2,...,mns)。注意, a n k a_{nk} ank a k a_k ak的无偏估计,而 m n k m_{nk} mnk不是 μ k \mu_{k} μk的无偏估计。

样本 k k k阶原点矩
a n k = 1 n ∑ i = 1 n X i k ,   k = 1 , 2 , 3 , . . . a_{nk}=\frac{1}{n}\sum_{i=1}^n{X_i^k}, \space k=1,2,3,... ank=n1i=1nXik, k=1,2,3,...
总体 k k k阶原点矩
α k = E ( X k ) \alpha_k = E(X^k) αk=E(Xk)
样本 k k k阶中心矩
m n k = 1 n ∑ i = 1 n ( X i − X ˉ ) k ,   k = 2 , 3 , . . . m_{nk} = \frac{1}{n}\sum_{i=1}^{n}{(X_i-\bar{X})^k}, \space k=2,3,... mnk=n1i=1n(XiXˉ)k, k=2,3,...
总体k阶中心矩
μ k = E [ X − E X ] k \mu_k = E[X-EX]^k μk=E[XEX]k
常用地,

  • E X EX EX可以用 X ˉ \bar{X} Xˉ来估计,
  • E ( X 2 ) E(X^2) E(X2)可以用 1 n ∑ i = 1 n X i 2 \frac{1}{n}\sum_{i=1}^n{X_i^2} n1i=1nXi2来估计,
  • D X = E [ X − E X ] 2 DX=E[X-EX]^2 DX=E[XEX]2可以用 S n 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 S_n^2 = \frac{1}{n}\sum_{i=1}^{n}{(X_i-\bar{X})^2} Sn2=n1i=1n(XiXˉ)2来估计。
2. 步骤

典型地,通过以下一个或多个式子建立方程。注意“几个方程解几个未知数”。
E X = X ˉ , E ( X 2 ) = 1 n ∑ i = 1 n X i 2 , D X = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 EX=\bar{X},\\ E(X^2)=\frac{1}{n}\sum_{i=1}^{n}{X_i^2},\\ DX = \frac{1}{n}\sum_{i=1}^{n}{(X_i-\bar{X})^2} EX=Xˉ,E(X2)=n1i=1nXi2,DX=n1i=1n(XiXˉ)2

3. 其他
  • 矩估计不唯一。
  • 不是所有的矩估计都有解析表达式。

三、最大似然估计 maximum likelihood estimation, MLE

1. 步骤
  1. 写出似然函数(likelihood function)(pdf、pmf)
    L ( θ ; X 1 , . . . , X n ) = p ( X 1 , . . . , X n ; θ ) l ( θ ; X 1 , . . . , X n ) = ln ⁡ L ( θ ; X 1 , . . . , X n ) L(\theta;X_1,...,X_n)=p(X_1,...,X_n;\theta)\\ l(\theta;X_1,...,X_n)=\ln L(\theta;X_1,...,X_n) L(θ;X1,...,Xn)=p(X1,...,Xn;θ)l(θ;X1,...,Xn)=lnL(θ;X1,...,Xn)

  2. θ ^ \hat \theta θ^,使得 L ( θ ^ ) = sup ⁡ θ ∈ Θ L ( θ ) L(\hat \theta)=\sup_{\theta \in \Theta} L(\theta) L(θ^)=supθΘL(θ)

    • 微分: ∂ ∂ θ L ( θ ) = 0 \frac{\partial}{\partial \theta}L(\theta)=0 θL(θ)=0 ∂ ∂ θ l ( θ ) = 0 \frac{\partial}{\partial \theta}l(\theta)=0 θl(θ)=0
    • 从定义出发,当似然函数对 θ \theta θ不可微甚至不连续的情况下
2. 性质
  • 不变原则:设 θ ^ M L E \hat \theta_{MLE} θ^MLE θ \theta θ的MLE,则对任意可测函数 g ( θ ) g(\theta) g(θ) g ( θ ^ M L E ) g(\hat \theta_{MLE}) g(θ^MLE) g ( θ ) g(\theta) g(θ)的MLE

  • MLE不一定是无偏的,MLE可以表示为充分统计量T的函数

  • 渐进正态性

四、一致最小方差无偏估计 uniformly minimum variance unbiased estimation, UMVUE

均方误差(mean square error, MSE) M S E ( g ^ ) = E θ [ g ^ ( X ) − g ( θ ) ] 2 MSE(\hat g)=E_\theta[\hat{g}(\boldsymbol X)-g(\theta)]^2 MSE(g^)=Eθ[g^(X)g(θ)]2

可估参数(estimable estimator):有无偏估计的参数

一致最小方差无偏估计(uniformly minimum variance unbiased estimation, UMVUE):在可估参数的无偏估计类中找一个方差最小的估计量

  • g ^ ∗ ( X ) \hat{g}^*(\boldsymbol{X}) g^(X) g ( θ ) g(\theta) g(θ)的无偏估计
  • g ( θ ) g(\theta) g(θ)的任一无偏估计 g ^ ( X ) \hat{g}(\boldsymbol{X}) g^(X) D θ ( g ^ ∗ ( X ) ) ≤ D θ ( g ^ ( X ) ) D_\theta(\hat{g}^*(\boldsymbol{X}))\leq D_\theta(\hat{g}(\boldsymbol{X})) Dθ(g^(X))Dθ(g^(X))

证明,C-R不等式

chapter 4 区间估计 Interval Estimation

一、评价标准

置信度/置信水平(confidence level):区间 [ θ ^ 1 , θ ^ 2 ] [\hat\theta_1,\hat\theta_2] [θ^1,θ^2]包含 θ \theta θ的概率 P θ ( θ ^ 1 ≤ θ ≤ θ ^ 2 ) P_\theta(\hat\theta_1\leq\theta\leq\hat\theta_2) Pθ(θ^1θθ^2),希望其越大越好

置信系数(confidence coefficient) inf ⁡ θ ∈ Θ P θ ( θ ^ 1 ≤ θ ≤ θ ^ 2 ) \inf_{\theta\in\Theta}P_\theta(\hat\theta_1\leq\theta\leq\hat\theta_2) infθΘPθ(θ^1θθ^2)

精确度:随机区间 [ θ ^ 1 , θ ^ 2 ] [\hat\theta_1,\hat\theta_2] [θ^1,θ^2]的平均长度 E θ [ θ ^ 2 − θ ^ 1 ] E_\theta[\hat\theta_2-\hat\theta_1] Eθ[θ^2θ^1],希望其越小越好

置信度与精确度互相制约着,在保证置信系数达到指定要求的前提下,经可能提高精度。

二、置信区间定义

置信水平为 1 − α 1-\alpha 1α的双侧置信区间 [ θ ^ 1 , θ ^ 2 ] [\hat\theta_1,\hat\theta_2] [θ^1,θ^2] P θ ( θ ^ 1 ≤ θ ≤ θ ^ 2 ) ≥ 1 − α P_\theta(\hat\theta_1\leq\theta\leq\hat\theta_2)\geq1-\alpha Pθ(θ^1θθ^2)1α

置信水平为 1 − α 1-\alpha 1α的单侧置信上限(upper confidence limit) θ ^ U \hat\theta_U θ^U P θ ( θ ≤ θ ^ U ) ≥ 1 − α P_\theta(\theta\leq\hat\theta_U)\geq1-\alpha Pθ(θθ^U)1α

置信水平为 1 − α 1-\alpha 1α的单侧置信下限(lower confidence limit) θ ^ L \hat\theta_L θ^L P θ ( θ ^ L ≤ θ ) ≥ 1 − α P_\theta(\hat\theta_L\leq\theta)\geq1-\alpha Pθ(θ^Lθ)1α

置信水平为 1 − α 1-\alpha 1α的同等双侧置信区间 [ θ ^ 1 , θ ^ 2 ] [\hat\theta_1,\hat\theta_2] [θ^1,θ^2] inf ⁡ θ ∈ Θ P θ ( θ ^ 1 ≤ θ ≤ θ ^ 2 ) = 1 − α \inf_{\theta\in\Theta}P_\theta(\hat\theta_1\leq\theta\leq\hat\theta_2)=1-\alpha infθΘPθ(θ^1θθ^2)=1α

置信水平为 1 − α 1-\alpha 1α的同等单侧置信上限(upper confidence limit) θ ^ U \hat\theta_U θ^U inf ⁡ θ ∈ Θ P θ ( θ ≤ θ ^ U ) = 1 − α \inf_{\theta \in \Theta}P_\theta(\theta\leq\hat\theta_U)=1-\alpha infθΘPθ(θθ^U)=1α

置信水平为 1 − α 1-\alpha 1α的同等单侧置信下限(lower confidence limit) θ ^ L \hat\theta_L θ^L inf ⁡ θ ∈ Θ P θ ( θ ^ L ≤ θ ) = 1 − α \inf_{\theta \in \Theta}P_\theta(\hat\theta_L\leq\theta)=1-\alpha infθΘPθ(θ^Lθ)=1α

双侧、单侧、同等、最优 置信度达到了,让精度最优,区间平均长度最小

等尾 默认

三、枢轴量法

1. 步骤
  1. 构造一个样本 X \boldsymbol{X} X和待估参数 θ \theta θ的函数 G ( X , θ ) G(\boldsymbol{X},\theta) G(X,θ),满足G的分布不依赖于任何未知参数,称G为枢轴量。通常是点估计、充分统计量的函数。

  2. 确定常数c、d 使得 P θ { c ≤ G ( X , θ ) ≤ d } = 1 − α P_\theta\{c\leq G(\boldsymbol{X},\theta)\leq d\}=1-\alpha Pθ{cG(X,θ)d}=1α

  3. c ≤ G ( X , θ ) ≤ d ⇒ θ L ^ ( X ) ≤ θ ≤ θ U ^ ( X ) c\leq G(\boldsymbol{X},\theta)\leq d\Rightarrow\hat{\theta_L}(\boldsymbol{X})\leq\theta\leq\hat{\theta_U}(\boldsymbol{X}) cG(X,θ)dθL^(X)θθU^(X)

2. 常见的枢轴量

P ( − u α 2 ≤ U ≤ u α 2 ) = 1 − α U ∼ N ( 0 , 1 ) P ( − t n ( α 2 ) ≤ T ≤ t n ( α 2 ) ) = 1 − α T ∼ t ( n ) P ( χ n 2 ( 1 − α 2 ) ≤ X ≤ χ n 2 ( α 2 ) ) = 1 − α X ∼ χ 2 ( n ) P ( F m , n ( 1 − α 2 ) = 1 F n , m ( α 2 ) ≤ F ≤ F m , n ( α 2 ) ) = 1 − α F ∼ F m , n \begin{array}{ll} &P(-u_{\frac{\alpha}{2}}\leq U\leq u_{\frac{\alpha}{2}})=1-\alpha &U\sim N(0,1)\\ &P(-t_{n}(\frac{\alpha}{2})\leq T\leq t_{n}(\frac{\alpha}{2}))=1-\alpha &T\sim t(n)\\ &P(\chi^2_{n}(1-\frac{\alpha}{2})\leq X\leq \chi^2_{n}(\frac{\alpha}{2}))=1-\alpha &X\sim \chi^2(n)\\ &P(F_{m,n}(1-\frac{\alpha}{2})=\frac{1}{F_{n,m}(\frac{\alpha}{2})}\leq F\leq F_{m,n}(\frac{\alpha}{2}))=1-\alpha &F\sim F_{m,n} \end{array} P(u2αUu2α)=1αP(tn(2α)Ttn(2α))=1αP(χn2(12α)Xχn2(2α))=1αP(Fm,n(12α)=Fn,m(2α)1FFm,n(2α))=1αUN(0,1)Tt(n)Xχ2(n)FFm,n

正态总体参数的置信区间

单个正态总体

X ∼ N ( μ , σ 2 ) , X 1 , . . . , X n   i . i . d . ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2),X_1,...,X_n\ i.i.d.\sim N(\mu,\sigma^2) XN(μ,σ2)X1,...,Xn i.i.d.N(μ,σ2)

  • μ \mu μ的置信系数为 1 − α 1-\alpha 1α的置信区间

    • σ 2 \sigma^2 σ2已知,
      [ X ˉ − σ n u α 2 , X ˉ + σ n u α 2 ] U = n ( X ˉ − μ ) σ ∼ N ( 0 , 1 ) [\bar{X}-\frac{\sigma}{\sqrt{n}}u_{\frac{\alpha}{2}},\bar{X}+\frac{\sigma}{\sqrt{n}}u_{\frac{\alpha}{2}}] \quad U=\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\sim N(0,1) [Xˉn σu2α,Xˉ+n σu2α]U=σn (Xˉμ)N(0,1)

    • σ 2 \sigma^2 σ2未知

    [ X ˉ − σ n t n − 1 ( α 2 ) , X ˉ + σ n t n − 1 ( α 2 ) ] T = n ( X ˉ − μ ) S ∼ t ( n − 1 ) [\bar{X}-\frac{\sigma}{\sqrt{n}}t_{n-1}(\frac{\alpha}{2}),\bar{X}+\frac{\sigma}{\sqrt{n}}t_{n-1}(\frac{\alpha}{2})] \quad T=\frac{\sqrt{n}(\bar{X}-\mu)}{S}\sim t(n-1) [Xˉn σtn1(2α),Xˉ+n σtn1(2α)]T=Sn (Xˉμ)t(n1)

  • σ 2 \sigma^2 σ2的置信系数为 1 − α 1-\alpha 1α的置信区间

    • μ \mu μ已知
      [ ∑ i = 1 n ( X i − μ ) 2 χ n 2 ( α 2 ) , ∑ i = 1 n ( X i − μ ) 2 χ n 2 ( 1 − α 2 ) ] T = n × 1 n ∑ i = 1 n ( X i − μ ) 2 σ 2 ∼ χ n 2 [\frac{\sum_{i=1}^n(X_i-\mu)^2}{\chi_n^2(\frac{\alpha}{2})},\frac{\sum_{i=1}^n(X_i-\mu)^2}{\chi_n^2(1-\frac{\alpha}{2})}] \quad T=\frac{n\times\frac{1}{n}\sum_{i=1}^n(X_i-\mu)^2}{\sigma^2}\sim \chi_n^2 [χn2(2α)i=1n(Xiμ)2,χn2(12α)i=1n(Xiμ)2]T=σ2n×n1i=1n(Xiμ)2χn2

    • μ \mu μ未知
      [ ( n − 1 ) S 2 χ n − 1 2 ( α 2 ) , ( n − 1 ) S 2 χ n − 1 2 ( 1 − α 2 ) ] T = ( n − 1 ) S 2 σ 2 ∼ χ n − 1 2 [\frac{(n-1)S^2}{\chi_{n-1}^2(\frac{\alpha}{2})},\frac{(n-1)S^2}{\chi_{n-1}^2(1-\frac{\alpha}{2})}] \quad T=\frac{(n-1)S^2}{\sigma^2}\sim \chi_{n-1}^2 [χn12(2α)(n1)S2,χn12(12α)(n1)S2]T=σ2(n1)S2χn12

  • σ \sigma σ的置信系数为 1 − α 1-\alpha 1α的置信区间

    上述区间端点开平方得

两个正态总体

X 1 , . . . , X m   i . i . d . ∼ N ( μ 1 , σ 1 2 ) , Y 1 , . . . , Y n   i . i . d . ∼ N ( μ 2 , σ 2 2 ) X_1,...,X_m\ i.i.d.\sim N(\mu_1,\sigma_1^2),Y_1,...,Y_n\ i.i.d.\sim N(\mu_2,\sigma_2^2) X1,...,Xm i.i.d.N(μ1,σ12),Y1,...,Yn i.i.d.N(μ2,σ22)且相互独立

X ˉ ∼ N ( μ 1 , σ 1 2 m ) Y ˉ ∼ N ( μ 2 , σ 2 2 n ) Y ˉ − X ˉ ∼ N ( μ 2 − μ 1 , σ 1 2 m + σ 2 2 n ) \bar X\sim N(\mu_1,\frac{\sigma_1^2}{m})\\ \bar Y\sim N(\mu_2,\frac{\sigma_2^2}{n})\\ \bar Y-\bar X\sim N(\mu_2-\mu_1,\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n})\\ XˉN(μ1,mσ12)YˉN(μ2,nσ22)YˉXˉN(μ2μ1,mσ12+nσ22)

  • 求均值差 μ 2 − μ 1 \mu_2-\mu_1 μ2μ1的置信系数为 1 − α 1-\alpha 1α置信区间

    • m = n m=n m=n时, Y i − X i ∼ N ( μ 2 − μ 1 , σ 1 2 + σ 2 2 ) Y_i-X_i\sim N(\mu_2-\mu_1,\sigma_1^2+\sigma_2^2) YiXiN(μ2μ1,σ12+σ22),可以转换为单个正态总体的情况。

    • σ 1 2 \sigma_1^2 σ12 σ 2 2 \sigma_2^2 σ22已知
      Y ˉ − X ˉ + σ 1 2 m + σ 2 2 n u α 2 ] U = Y ˉ − X ˉ − ( μ 2 − μ 1 ) σ 1 2 m + σ 2 2 n ∼ N ( 0 , 1 ) \bar{Y}-\bar{X}+\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}}u_{\frac{\alpha}{2}}] \quad U=\frac{\bar Y-\bar X-(\mu_2-\mu_1)}{\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}}}\sim N(0,1) YˉXˉ+mσ12+nσ22 u2α]U=mσ12+nσ22 YˉXˉ(μ2μ1)N(0,1)

    • σ 1 2 \sigma_1^2 σ12 σ 2 2 \sigma_2^2 σ22未知,但 σ 1 2 = σ 2 2 = σ 2 \sigma_1^2=\sigma_2^2=\sigma^2 σ12=σ22=σ2
      [ Y ˉ − X ˉ − S w 1 m + 1 n t m + n − 2 ( α 2 ) , Y ˉ − X ˉ + S w 1 m + 1 n t m + n − 2 ( α 2 ) ] T w = ( Y ˉ − X ˉ − ( μ 2 − μ 1 ) ) 1 m + 1 n S w ∼ t ( m + n − 2 ) S w 2 = 1 m + n − 2 [ ( m − 1 ) S 1 2 + ( n − 1 ) S 2 2 ] = 1 m + n − 2 [ ∑ i = 1 m ( X i − X ˉ ) 2 + ∑ i = 1 n ( Y i − Y ˉ ) 2 ] [\bar{Y}-\bar{X}-S_w\sqrt{\frac{1}{m}+\frac{1}{n}}t_{m+n-2}(\frac{\alpha}{2}), \bar{Y}-\bar{X}+S_w\sqrt{\frac{1}{m}+\frac{1}{n}}t_{m+n-2}(\frac{\alpha}{2})] \\ T_w=\frac{(\bar{Y}-\bar{X}-(\mu_2-\mu_1))}{\sqrt{\frac{1}{m}+\frac{1}{n}} S_w}\sim t(m+n-2) \\ S_w^2=\frac{1}{m+n-2}[(m-1)S_1^2+(n-1)S_2^2]=\frac{1}{m+n-2}[\sum_{i=1}^{m}(X_i-\bar{X})^2+\sum_{i=1}^{n}(Y_i-\bar{Y})^2] [YˉXˉSwm1+n1 tm+n2(2α),YˉXˉ+Swm1+n1 tm+n2(2α)]Tw=m1+n1 Sw(YˉXˉ(μ2μ1))t(m+n2)Sw2=m+n21[(m1)S12+(n1)S22]=m+n21[i=1m(XiXˉ)2+i=1n(YiYˉ)2]

  • 求方差比 σ 1 2 / σ 2 2 \sigma_1^2/\sigma_2^2 σ12/σ22的置信系数为 1 − α 1-\alpha 1α的置信区间

    • μ 1 \mu_1 μ1 μ 2 \mu_2 μ2已知
      [ 1 m ∑ i = 1 m ( X i − μ 1 ) 2 1 n ∑ i = 1 n ( Y i − μ 2 ) 2 F n , m ( 1 − α 2 ) , 1 m ∑ i = 1 m ( X i − μ 1 ) 2 1 n ∑ i = 1 n ( Y i − μ 2 ) 2 F n , m ( α 2 ) ] F = [ 1 m ∑ i = 1 m ( X i − μ 1 ) 2 ] / σ 1 2 [ 1 n ∑ i = 1 n ( Y i − μ 2 ) 2 ] / σ 2 2 ∼ F ( m , n ) [\frac{\frac{1}{m}\sum_{i=1}^{m}(X_i-\mu_1)^2} {\frac{1}{n}\sum_{i=1}^{n}(Y_i-\mu_2)^2}F_{n,m}(1-\frac{\alpha}{2}), \frac{\frac{1}{m}\sum_{i=1}^{m}(X_i-\mu_1)^2} {\frac{1}{n}\sum_{i=1}^{n}(Y_i-\mu_2)^2}F_{n,m}(\frac{\alpha}{2})] \quad F=\frac{[\frac{1}{m}\sum_{i=1}^{m}(X_i-\mu_1)^2]/\sigma_1^2} {[\frac{1}{n}\sum_{i=1}^{n}(Y_i-\mu_2)^2]/\sigma_2^2}\sim F(m,n) [n1i=1n(Yiμ2)2m1i=1m(Xiμ1)2Fn,m(12α),n1i=1n(Yiμ2)2m1i=1m(Xiμ1)2Fn,m(2α)]F=[n1i=1n(Yiμ2)2]/σ22[m1i=1m(Xiμ1)2]/σ12F(m,n)

    • μ 1 \mu_1 μ1 μ 2 \mu_2 μ2未知
      [ S 1 2 S 2 2 F n − 1 , m − 1 ( 1 − α 2 ) , S 1 2 S 2 2 F n − 1 , m − 1 ( α 2 ) ] F = S 1 2 / σ 1 2 S 2 2 / σ 2 2 ∼ F ( m − 1 , n − 1 ) [\frac{S_1^2}{S_2^2}F_{n-1,m-1}(1-\frac{\alpha}{2}), \frac{S_1^2}{S_2^2}F_{n-1,m-1}(\frac{\alpha}{2})] \quad F=\frac{S_1^2/\sigma_1^2} {S_2^2/\sigma_2^2}\sim F(m-1,n-1) [S22S12Fn1,m1(12α),S22S12Fn1,m1(2α)]F=S22/σ22S12/σ12F(m1,n1)

非正态总体参数的置信区间

指数分布

X 1 , . . . , X n   i . i . d . ∼ E ( λ ) X_1,...,X_n\ i.i.d.\sim E(\lambda) X1,...,Xn i.i.d.E(λ)

  • λ \lambda λ的置信系数为 1 − α 1-\alpha 1α的置信区间
    [ χ 2 n 2 ( 1 − α 2 ) 2 n X ˉ , χ 2 n 2 ( α 2 ) 2 n X ˉ ] 2 λ n X ˉ = 2 λ ∑ i = 1 n X i ∼ Γ ( n , 1 2 ) ∼ χ 2 n 2 [\frac{\chi_{2n}^2(1-\frac{\alpha}{2})}{2n\bar{X}}, \frac{\chi_{2n}^2(\frac{\alpha}{2})}{2n\bar{X}}] \quad 2\lambda n\bar X=2\lambda\sum_{i=1}^nX_i\sim\Gamma(n,\frac{1}{2})\sim\chi_{2n}^2 [2nXˉχ2n2(12α),2nXˉχ2n2(2α)]2λnXˉ=2λi=1nXiΓ(n,21)χ2n2

均匀分布

X 1 , . . . , X n   i . i . d . ∼ U ( 0 , θ ) X_1,...,X_n\ i.i.d.\sim U(0,\theta) X1,...,Xn i.i.d.U(0,θ)

  • θ \theta θ的置信系数为 1 − α 1-\alpha 1α的置信区间
    [ X ( n ) , X ( n ) α n ] [X_{(n)}, \frac{X_{(n)}}{\sqrt[n]{\alpha}}] [X(n),nα X(n)]

四、Bayes可信区间

P ( θ L ^ ≤ θ ≤ θ U ^ ∣ X ) ≥ 1 − α P(\hat{\theta_L}\leq\theta\leq\hat{\theta_U}|\boldsymbol{X})\geq1-\alpha P(θL^θθU^X)1α

Hypothesis Testing

chapter 5 参数假设检验

一、几个概念

假设检验的问题 H 0 : θ ∈ Θ 0 ↔ H 1 : θ ∈ Θ 1 = Θ − Θ 0 H_0:\theta\in\Theta_0\leftrightarrow H_1:\theta\in\Theta_1=\Theta-\Theta_0 H0:θΘ0H1:θΘ1=ΘΘ0

  • 零假设/原假设/假设(null hypothesis) H 0 H_0 H0

  • 对立假设/备选假设(alternative hypothesis) H 1 H_1 H1

检验
T : { 当 | X ˉ − a 0 | > A 时 , 拒 绝 H 0 当 | X ˉ − a 0 | ≤ A 时 , 接 受 H 0 T:\left\{ \begin{array}{ll} &当|\bar{X}-a_0|>A时, &拒绝H_0\\ &当|\bar{X}-a_0|\leq A时, &接受H_0 \end{array} \right. T:{Xˉa0>A,Xˉa0A,H0H0
否定域/拒绝域(rejection region) D = { X : ∣ X ˉ − a 0 ∣ > A } D=\{\boldsymbol{X}:|\bar{X}-a_0|>A\} D={X:Xˉa0>A}

检验函数
φ ( x ) = { 1 , 当 | X ˉ − a 0 | > A 0 , 当 | X ˉ − a 0 | ≤ A \varphi(x)=\left\{ \begin{array}{ll} &1, &当|\bar{X}-a_0|>A\\ &0, &当|\bar{X}-a_0|\leq A \end{array} \right. φ(x)={1,0,Xˉa0>AXˉa0A
两类错误

  • 第一类错误(type I error)/弃真: H 0 H_0 H0为真,但是按照检验法则否定了 H 0 H_0 H0

    发生第一类错误的概率 P ( 拒 绝 H 0 | H 0 为 真 ) P(拒绝H_0|H_0为真) P(H0H0)

  • 第二类错误(type II error)/取伪: H 0 H_0 H0不为真,但是按照检验法则接受了 H 0 H_0 H0

    发生第二类错误的概率 P ( 接 受 H 0 | H 0 不 为 真 ) P(接受H_0|H_0不为真) P(H0H0)

势函数 power function
β φ ( θ ) = P θ { 用 检 验 φ 拒 绝 原 假 设 } = P ( X ∈ D ∣ θ ) = P ( φ ( X ) = 1 ∣ θ ) = E θ [ φ ( X ) ] \beta_\varphi(\theta)=P_\theta\{用检验\varphi拒绝原假设\}=P(\boldsymbol{X}\in D|\theta)=P(\varphi(\boldsymbol{X})=1|\theta)=E_\theta[\varphi(\boldsymbol{X})] βφ(θ)=Pθ{φ}=P(XDθ)=P(φ(X)=1θ)=Eθ[φ(X)]
Neyman-Person/NP原则:限制犯第一类错误概率的原则,即在保证犯第一类错误的概率不超过指定数值 α \alpha α的检验中,寻找犯第二类错误概率仅可能小的检验

检验水平/显著性水平为 α \alpha α检验(level/size):犯第一类错误的概率不超过 α \alpha α
α = sup ⁡ θ ∈ Θ 0 β φ ( θ ) = sup ⁡ P ( X ∈ D ∣ θ ∈ Θ 0 ) \alpha=\sup_{\theta\in\Theta_0}\beta_\varphi(\theta)=\sup P(\boldsymbol{X}\in D|\theta\in \Theta_0) α=θΘ0supβφ(θ)=supP(XDθΘ0)
p值

  • 原假设为 H 0 : θ = θ 0 H_0:\theta=\theta_0 H0:θ=θ0,其否定域为 ∣ T ∣ > c |T|>c T>c,样本算出的检验统计量 T T T的值为 t 0 t_0 t0
    p = P ( ∣ T ∣ > ∣ t 0 ∣   ∣ H 0 为 真 ) p=P(|T|>|t_0|\ |H_0为真) p=P(T>t0 H0)

  • 原假设为 H 0 : θ ≤ θ 0 H_0:\theta\leq\theta_0 H0:θθ0,其否定域为 T > c T>c T>c,样本算出的检验统计量 T T T的值为 t 0 t_0 t0
    p = P ( T > t 0   ∣ H 0 为 真 ) p=P(T>t_0\ |H_0为真) p=P(T>t0 H0)

  • 原假设为 H 0 : θ ≥ θ 0 H_0:\theta\geq\theta_0 H0:θθ0,其否定域为 T < c T<c T<c,样本算出的检验统计量 T T T的值为 t 0 t_0 t0
    p = P ( T < t 0   ∣ H 0 为 真 ) p=P(T<t_0\ |H_0为真) p=P(T<t0 H0)

  • 若p值较大,说明在 H 0 H_0 H0为真时,有 t 0 t_0 t0那么大的偏差的概率较大(很正常)。因此,p越大,认为接受 H 0 H_0 H0的依据越充分;p值越小,认为拒绝 H 0 H_0 H0的依据越充分。

二、步骤(2种)

  1. 正常方法

    H 0 : θ = θ 0 H_0:\theta=\theta_0 H0:θ=θ0显著性水平为 α \alpha α的接受域 ⇔ \Leftrightarrow 水平为 1 − α 1-\alpha 1α的置信区间

  2. p值

三、正态总体参数的假设检验

单个正态总体均值的假设检验

  • σ 2 \sigma^2 σ2已知

    • 检验统计量及其分布
      U = n ( X ˉ − μ 0 ) σ U ∣ μ = μ 0 ∼ N ( 0 , 1 ) U=\frac{\sqrt{n}(\bar{X}-\mu_0)}{\sigma}\\ U\big|_{\mu=\mu_0}\sim N(0,1) U=σn (Xˉμ0)Uμ=μ0N(0,1)

    • H 0 : μ = μ 0 ↔ H 1 : μ ≠ μ 0 H_0:\mu=\mu_0\leftrightarrow H_1:\mu\neq\mu_0 H0:μ=μ0H1:μ=μ0,否定域 D = { ∣ U ∣ > u α 2 } D=\{|U|>u_\frac{\alpha}{2}\} D={U>u2α}

    • H 0 : μ ≤ μ 0 ↔ H 1 : μ > μ 0 H_0:\mu\leq\mu_0\leftrightarrow H_1:\mu>\mu_0 H0:μμ0H1:μ>μ0,否定域 D = { U > u α } D=\{U>u_{\alpha}\} D={U>uα}

    • H 0 : μ ≥ μ 0 ↔ H 1 : μ < μ 0 H_0:\mu\geq\mu_0\leftrightarrow H_1:\mu<\mu_0 H0:μμ0H1:μ<μ0,否定域 D = { U < u α } D=\{U<u_{\alpha}\} D={U<uα}

  • σ 2 \sigma^2 σ2未知

    • 检验统计量及其分布
      T = n ( X ˉ − μ 0 ) S T ∣ μ = μ 0 ∼ t ( n − 1 ) T=\frac{\sqrt{n}(\bar{X}-\mu_0)}{S}\\ T\big|_{\mu=\mu_0}\sim t(n-1) T=Sn (Xˉμ0)Tμ=μ0t(n1)

    • H 0 : μ = μ 0 ↔ H 1 : μ ≠ μ 0 H_0:\mu=\mu_0\leftrightarrow H_1:\mu\neq\mu_0 H0:μ=μ0H1:μ=μ0,否定域 D = { ∣ T ∣ > t n − 1 ( α 2 ) } D=\{|T|>t_{n-1}(\frac{\alpha}{2})\} D={T>tn1(2α)}

    • H 0 : μ ≤ μ 0 ↔ H 1 : μ > μ 0 H_0:\mu\leq\mu_0\leftrightarrow H_1:\mu>\mu_0 H0:μμ0H1:μ>μ0,否定域 D = { T > t n − 1 ( α ) } D=\{T>t_{n-1}(\alpha)\} D={T>tn1(α)}

    • H 0 : μ ≥ μ 0 ↔ H 1 : μ < μ 0 H_0:\mu\geq\mu_0\leftrightarrow H_1:\mu<\mu_0 H0:μμ0H1:μ<μ0,否定域 D = { T < t n − 1 ( α ) } D=\{T<t_{n-1}(\alpha)\} D={T<tn1(α)}

单个正态总体方差的检验

  • μ \mu μ已知

    • 检验统计量及其分布
      χ μ 2 = n S μ 2 σ 0 2 χ μ 2 ∣ σ = σ 0 ∼ χ 2 ( n ) \chi_\mu^2=\frac{nS_\mu^2}{\sigma_0^2}\\ \chi_\mu^2\big|_{\sigma=\sigma_0}\sim \chi^2(n) χμ2=σ02nSμ2χμ2σ=σ0χ2(n)

    • H 0 : σ 2 = σ 0 2 ↔ H 1 : σ 2 ≠ σ 0 2 H_0:\sigma^2=\sigma_0^2\leftrightarrow H_1:\sigma^2\neq\sigma_0^2 H0:σ2=σ02H1:σ2=σ02,否定域 D = { n S μ 2 σ 0 2 < χ n 2 ( 1 − α 2 ) } ∪ { n S μ 2 σ 0 2 > χ n 2 ( α 2 ) } D=\{\frac{nS_\mu^2}{\sigma_0^2}<\chi_n^2(1-\frac{\alpha}{2})\}\cup\{\frac{nS_\mu^2}{\sigma_0^2}>\chi_n^2(\frac{\alpha}{2})\} D={σ02nSμ2<χn2(12α)}{σ02nSμ2>χn2(2α)}

    • H 0 : σ 2 ≤ σ 0 2 ↔ H 1 : σ 2 > σ 0 2 H_0:\sigma^2\leq\sigma_0^2\leftrightarrow H_1:\sigma^2>\sigma_0^2 H0:σ2σ02H1:σ2>σ02,否定域 D = { n S μ 2 σ 0 2 > χ n 2 ( α ) } D=\{\frac{nS_\mu^2}{\sigma_0^2}>\chi_n^2(\alpha)\} D={σ02nSμ2>χn2(α)}

    • H 0 : σ 2 ≥ σ 0 2 ↔ H 1 : σ 2 < σ 0 2 H_0:\sigma^2\geq\sigma_0^2\leftrightarrow H_1:\sigma^2<\sigma_0^2 H0:σ2σ02H1:σ2<σ02,否定域 D = { n S μ 2 σ 0 2 < χ n 2 ( 1 − α ) } D=\{\frac{nS_\mu^2}{\sigma_0^2}<\chi_n^2(1-\alpha)\} D={σ02nSμ2<χn2(1α)}

  • μ \mu μ未知

    • 检验统计量及其分布
      χ 2 = ( n − 1 ) S 2 σ 0 2 χ 2 ∣ σ = σ 0 ∼ χ 2 ( n − 1 ) \chi^2=\frac{(n-1)S^2}{\sigma_0^2}\\ \chi^2\big|_{\sigma=\sigma_0}\sim \chi^2(n-1) χ2=σ02(n1)S2χ2σ=σ0χ2(n1)

    • H 0 : σ 2 = σ 0 2 ↔ H 1 : σ 2 ≠ σ 0 2 H_0:\sigma^2=\sigma_0^2\leftrightarrow H_1:\sigma^2\neq\sigma_0^2 H0:σ2=σ02H1:σ2=σ02,否定域 D = { ( n − 1 ) S 2 σ 0 2 < χ n 2 ( 1 − α 2 ) } ∪ { ( n − 1 ) S 2 σ 0 2 > χ n 2 ( α 2 ) } D=\{\frac{(n-1)S^2}{\sigma_0^2}<\chi_n^2(1-\frac{\alpha}{2})\}\cup\{\frac{(n-1)S^2}{\sigma_0^2}>\chi_n^2(\frac{\alpha}{2})\} D={σ02(n1)S2<χn2(12α)}{σ02(n1)S2>χn2(2α)}

    • H 0 : σ 2 ≤ σ 0 2 ↔ H 1 : σ 2 > σ 0 2 H_0:\sigma^2\leq\sigma_0^2\leftrightarrow H_1:\sigma^2>\sigma_0^2 H0:σ2σ02H1:σ2>σ02,否定域 D = { ( n − 1 ) S 2 σ 0 2 > χ n 2 ( α ) } D=\{\frac{(n-1)S^2}{\sigma_0^2}>\chi_n^2(\alpha)\} D={σ02(n1)S2>χn2(α)}

    • H 0 : σ 2 ≥ σ 0 2 ↔ H 1 : σ 2 < σ 0 2 H_0:\sigma^2\geq\sigma_0^2\leftrightarrow H_1:\sigma^2<\sigma_0^2 H0:σ2σ02H1:σ2<σ02,否定域 D = { ( n − 1 ) S 2 σ 0 2 < χ n 2 ( 1 − α ) } D=\{\frac{(n-1)S^2}{\sigma_0^2}<\chi_n^2(1-\alpha)\} D={σ02(n1)S2<χn2(1α)}

两个正态总体均值差的假设检验

p182

两个正态总体方差比的假设检验

p187-表5.2.4

四、单参数指数型分布总体参数的假设检验

二项分布

Poisson分布

指数分布

五、似然比检验 likelihood ratio test

似然比
λ ( x ) = sup ⁡ θ ∈ Θ f ( x , θ ) sup ⁡ θ ∈ Θ 0 f ( x , θ ) \lambda(\boldsymbol{x})=\frac{\sup_{\theta\in\Theta}f(\boldsymbol{x},\theta)}{\sup_{\theta\in\Theta_0}f(\boldsymbol{x},\theta)} λ(x)=supθΘ0f(x,θ)supθΘf(x,θ)
解释:设
L Θ 0 ( x ) = sup ⁡ θ ∈ Θ 0 f ( x , θ ) L Θ 1 ( x ) = sup ⁡ θ ∈ Θ 1 f ( x , θ ) L_{\Theta_0}(\boldsymbol{x})=\sup_{\theta\in\Theta_0}f(\boldsymbol{x},\theta) \\ L_{\Theta_1}(\boldsymbol{x})=\sup_{\theta\in\Theta_1}f(\boldsymbol{x},\theta) LΘ0(x)=θΘ0supf(x,θ)LΘ1(x)=θΘ1supf(x,θ)
考虑比值 L Θ 1 ( x ) / L Θ 0 ( x ) L_{\Theta_1}(\boldsymbol{x})/L_{\Theta_0}(\boldsymbol{x}) LΘ1(x)/LΘ0(x),若此比值比较大,说明真参数在 Θ 1 \Theta_1 Θ1内的“似然性”较大,因而倾向于否定原假设。

步骤

D = { λ ( x ) > c ′ } = { x : ∣ T ∣ > c } 令 P ( ∣ T ∣ > c ∣ H 0 ) = α D=\{\lambda(\boldsymbol{x})>c'\}=\{\boldsymbol{x}:|T|>c\} \\ 令P(|T|>c|H_0)=\alpha D={λ(x)>c}={x:T>c}P(T>cH0)=α

chapter 6 非参数假设检验

拟合优度检验 goodness-of-fit test

检验问题: H 0 : r . v . X 的 分 布 为 F H_0:r.v.X的分布为F H0:r.v.XF

设法提出一个反映实际数据 X 1 , . . . , X n X_1,...,X_n X1,...,Xn与理论分布 F F F偏差的量 D = D ( X 1 , . . . , X n ; F ) D=D(X_1,...,X_n;F) D=D(X1,...,Xn;F)

拟合优度(goodness of fit): p ( d 0 ) = P ( D ≥ d 0 ∣ H 0 ) p(d_0)=P(D\geq d_0|H_0) p(d0)=P(Dd0H0) p ( d 0 ) p(d_0) p(d0)越接近1,说明样本和理论分布拟合的越好。

拟合优度检验(goodness of fit test):当 p ( d 0 ) < α p(d_0)<\alpha p(d0)<α时否定 H 0 H_0 H0,否则接受 H 0 H_0 H0

由于D可以有不同的定义,拟合优度检验也有多种。其中, χ 2 \chi^2 χ2检验是著名的拟合优度检验之一

χ 2 \chi^2 χ2检验 χ 2 \chi^2 χ2 test
理论分布已知且为离散型,且取值情形有限

X 1 , . . . , X n X_1,...,X_n X1,...,Xn是从总体 X ∼ P ( X = a i ) = p i ,   i = 1 , . . , r X\sim P(X=a_i)=p_i,\ i=1,..,r XP(X=ai)=pi, i=1,..,r抽取的检验样本

检验问题:
H 0 : P ( X = a i ) = p i ,   i = 1 , . . . , r H_0:P(X=a_i)=p_i,\ i=1,...,r H0:P(X=ai)=pi, i=1,...,r
观察频数 ν i \nu_i νi X 1 , . . . , X n X_1,...,X_n X1,...,Xn中等于 a i a_i ai的个数

理论频数 n p i np_i npi

于是, ∑ i = 1 r c i ( ν i n − p i ) 2 \sum_{i=1}^{r}c_i(\frac{\nu_i}{n}-p_i)^2 i=1rci(nνipi)2可以作为样本与理论分布偏差的一种度量。

  1. (K. Pearson 证明了)在 H 0 H_0 H0成立的前提下,

    K n = ∑ i = 1 r ( ν i − n p i ) 2 n p i K_n=\sum_{i=1}^{r}\frac{(\nu_i-np_i)^2}{np_i} Kn=i=1rnpi(νinpi)2
    的极限分布为(当 n → ∞ n\to\infty n时)为 χ r − 1 2 \chi^2_{r-1} χr12

  2. 水平近似于 α \alpha α检验:当 K n > χ r − 1 2 ( α ) K_n>\chi_{r-1}^2(\alpha) Kn>χr12(α)时否定 H 0 H_0 H0(因为偏差的度量大),否则接受 H 0 H_0 H0

  3. 拟合优度(goodness of fit):设 k 0 k_0 k0为按照样本算出 K n K_n Kn的具体值, p ( k 0 ) = P ( K n ≥ k 0 ∣ H 0 ) ≈ P ( χ r − 1 2 ≥ k 0 ) p(k_0)=P(K_n\geq k_0|H_0)\approx P(\chi^2_{r-1}\geq k_0) p(k0)=P(Knk0H0)P(χr12k0) p ( k 0 ) p(k_0) p(k0)较大,认为拟合较好; p ( k 0 ) p(k_0) p(k0)较小,认为拟合的不好(p值的想法)

理论分布为离散型且取值情形可列个,或理论分布为连续型
  1. 分组,将实数轴划分成 r r r个子区间;每组的频数不小于5,否则合并相邻区间,但若数据是分类的值,不要合并,比如掷骰子
  2. 剩余步骤同上
理论分布带有未知参数情形

s s s为未知参数的个数, r r r问情况数

  1. 用MLE估计未知参数

  2. (R.A. Fisher 证明了)在 H 0 H_0 H0成立的前提下,
    K n ∗ = ∑ i = 1 r ( ν i − n p ^ i ) 2 n p ^ i K_n^*=\sum_{i=1}^{r}\frac{(\nu_i-n\hat p_i)^2}{n\hat p_i} Kn=i=1rnp^i(νinp^i)2
    的极限分布为(当 n → ∞ n\to\infty n时)为 χ r − 1 − s 2 \chi^2_{r-1-s} χr1s2

  3. 水平近似于 α \alpha α检验:当 K n ∗ > χ r − 1 − s 2 ( α ) K_n^*>\chi_{r-1-s}^2(\alpha) Kn>χr1s2(α)时否定 H 0 H_0 H0(因为偏差的度量大),否则接受 H 0 H_0 H0

  4. 拟合优度(goodness of fit):设 k 0 ∗ k_0^* k0为按照样本算出 K n ∗ K_n^* Kn的具体值, p ( k 0 ∗ ) = P ( K n ∗ ≥ k 0 ∗ ∣ H 0 ) ≈ P ( χ r − 1 − s 2 ≥ k 0 ∗ ) p(k_0^*)=P(K_n^*\geq k_0^*|H_0)\approx P(\chi^2_{r-1-s}\geq k_0^*) p(k0)=P(Knk0H0)P(χr1s2k0) p ( k 0 ∗ ) p(k_0^*) p(k0)较大,认为拟合较好; p ( k 0 ∗ ) p(k_0^*) p(k0)较小,认为拟合的不好

列联表检验 contingency table

列联表检验是 χ 2 \chi^2 χ2检验的一个特例

独立性检验 independency

设总体中每一个体按A、B两种属性分类,属性A、B分别有r和s个水平。引进随机向量 X = ( X ( 1 ) , X ( 2 ) ) \boldsymbol{X}=(X^{(1)},X^{(2)}) X=(X(1),X(2)) X ( 1 ) X^{(1)} X(1) X ( 2 ) X^{(2)} X(2)分别即同一个个体上的A、B指标的水平。

r × s r \times s r×s列联表: n i j n_{ij} nij为指标A为i、指标B为j的个体数量

检验问题: H 0 : X ( 1 ) 和 X ( 2 ) 独 立 H_0:X^{(1)}和X^{(2)}独立 H0:X(1)X(2)

齐一性检验 homogeneity

设有r个总体 X ( 1 ) , . . . X ( r ) X^{(1)},...X^{(r)} X(1),...X(r),它们可能的取值相同,为 a 1 , . . . , a s a_1,...,a_s a1,...,as

r × s r \times s r×s列联表: n i j n_{ij} nij为第i个总体取值为 a j a_j aj的个体数量

检验问题:r个总体分布相同, H 0 : p 1 ( j ) = p 2 ( j ) = . . . = p r ( j ) ,   j = 1 , . . . , s H_0:p_1(j)=p_2(j)=...=p_r(j),\ j=1,...,s H0:p1(j)=p2(j)=...=pr(j), j=1,...,s

步骤
  1. 用MLE估计未知参数 p ^ i ⋅ ∗ = n i ⋅ n , p ^ ⋅ j ∗ = n ⋅ j n \hat p^*_{i·}=\frac{n_{i·}}{n}, \hat p^*_{·j}=\frac{n_{·j}}{n} p^i=nni,p^j=nnj(独立性检验中的式子)

  2. H 0 H_0 H0成立的前提下,(独立性检验和齐次性检验的式子一致)

    K n ∗ = ∑ i = 1 r ∑ j = 1 s ( n i j − n p ^ i ⋅ ∗ p ^ ⋅ j ∗ ) 2 n p ^ i ⋅ ∗ p ^ ⋅ j ∗ = n ( ∑ i = 1 r ∑ j = 1 s n i j 2 n i ⋅ n ⋅ j − 1 ) K_n^*=\sum_{i=1}^{r}\sum_{j=1}^{s}\frac{(n_{ij}-n\hat p^*_{i·}\hat p^*_{·j})^2}{n\hat p^*_{i·}\hat p^*_{·j}}=n(\sum_{i=1}^{r}\sum_{j=1}^{s}\frac{n_{ij}^2}{n_{i·}n_{·j}}-1) Kn=i=1rj=1snp^ip^j(nijnp^ip^j)2=n(i=1rj=1sninjnij21)

    的极限分布为(当 n → ∞ n\to\infty n时)为 χ ( r − 1 ) ( s − 1 ) 2 \chi^2_{(r-1)(s-1)} χ(r1)(s1)2

    特别地, r = s = 2 r=s=2 r=s=2时, K n ∗ = n ( n 11 n 22 − n 12 n 21 ) 2 n 1 ⋅ n 2 ⋅ n ⋅ 1 n ⋅ 2 K_n^*=\frac{n(n_{11}n_{22}-n_{12}n_{21})^2}{n_{1·}n_{2·}n_{·1}n_{·2}} Kn=n1n2n1n2n(n11n22n12n21)2

  3. 水平近似于 α \alpha α检验:当 K n ∗ > χ ( r − 1 ) ( s − 1 ) 2 ( α ) K_n^*>\chi_{(r-1)(s-1)}^2(\alpha) Kn>χ(r1)(s1)2(α)时否定 H 0 H_0 H0(因为偏差的度量大),否则接受 H 0 H_0 H0

  4. 拟合优度(goodness of fit):设 k 0 ∗ k_0^* k0为按照样本算出 K n ∗ K_n^* Kn的具体值, p ( k 0 ∗ ) = P ( K n ∗ ≥ k 0 ∗ ∣ H 0 ) ≈ P ( χ ( r − 1 ) ( s − 1 ) 2 ≥ k 0 ∗ ) p(k_0^*)=P(K_n^*\geq k_0^*|H_0)\approx P(\chi^2_{(r-1)(s-1)}\geq k_0^*) p(k0)=P(Knk0H0)P(χ(r1)(s1)2k0) p ( k 0 ∗ ) p(k_0^*) p(k0)较大,认为拟合较好; p ( k 0 ∗ ) p(k_0^*) p(k0)较小,认为拟合的不好

一、符号检验 sign test

符号检验是二项分布参数检验的一个特例

二、符号秩和检验 sign and rank tests

Wilcoxon秩和检验

三、成对数据的检验

chapter 7 Bayes方法和统计决策

后验分布 posterior distribution
π ( θ ∣ x ) = p ( x , θ ) p ( x ) = p ( x , θ ) ∫ Θ p ( x , θ ) π ( θ ) d θ \pi(\theta|\boldsymbol{x}) =\frac{p(\boldsymbol{x},\theta)}{p(\boldsymbol{x})} =\frac{p(\boldsymbol{x},\theta)}{\int_{\Theta}p(\boldsymbol{x},\theta)\pi(\theta)d\theta} π(θx)=p(x)p(x,θ)=Θp(x,θ)π(θ)dθp(x,θ)

Bayes点估计

θ ^ B = ∫ Θ π ( θ ∣ x ) d θ \hat\theta_B=\int_{\Theta}\pi(\theta|\boldsymbol{x})d\theta θ^B=Θπ(θx)dθ

分母是C

Bayes可信区间

P ( θ ^ L ≤ θ ≤ θ ^ U ∣ x ) ≥ 1 − α ∫ θ ^ L θ ^ U π ( θ ∣ x ) d θ ≥ 1 − α P(\hat{\theta}_L\leq\theta\leq\hat{\theta}_U|\boldsymbol{x})\geq1-\alpha\\ \int_{\hat{\theta}_L}^{\hat{\theta}_U}\pi(\theta|\boldsymbol{x})d\theta\geq1-\alpha P(θ^Lθθ^Ux)1αθ^Lθ^Uπ(θx)dθ1α

也会求单侧

参考文献

数理统计(第二版)韦来生编著 科学出版社

  • 13
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值