
两周前考完了矩阵论,本来想把整本书的要点都扔上来,感觉没这个必要,就放一些总结性的东西吧!(排版比较简陋,大家凑活看吧
对角化的充要条件
- 矩阵有 n 个特征向量
- 矩阵的 s 重特征值对应有 s 个特征向量
- 矩阵的最小多项式为一次因子的乘积
- 矩阵的 Jordan 标准形全部是由一阶的 Jordan 块构成
矩阵的秩
秩最直观的就是化简为行最简形或等价标准形来直接看出来,而这两种形状最常见的用途就是用来解矩阵对应的线性方程组的解,所以遇到秩可以往对应的 Ax = 0 齐次方程组上靠。 矩阵的秩还反映了矩阵中线性无关的向量数量 ⇒ 矩阵行、列空间的维数等于秩,即 dim(R(A)) = dim(C(A)) = rankA 秩与特征值之间完全没有关系,但是和特征值的数量有一点关系:矩阵的秩 ≥ 其非零特征值个数
- 相等情况:矩阵可以相似对角化,易得相似变换不改变秩 所以对角矩阵的秩 = 其对角线非零元素个数 = 矩阵非零特征值个数
- 一般情况:矩阵相似于 Jordan 标准形,零特征值对应的 Jordan 块可能不是零矩阵 所以就占用了秩,导致非零特征值减少
秩等于非零奇异值的数量 ⇒ 由于 rankA = rank(A^H * A),因为 A^H * A 是正规矩阵,所以能够相似对角化 ⇒ 所以 rank(A^H * A) = 非零特征值个数 = 非零奇异值个数 = rankA 矩阵的运算对于秩的影响总结:
- rankA + rankB - n ≤ rankAB
- rankA* = n - rankA = n; 1 - rankA = n - 1; 0 - rankA < n - 1
- rank(A^H * A) = rank(A * A^H) = rankA
- rank(AB) ≤ min(rankA, rankB)
- rankA + rankB ≥ rankAB
矩阵之间的关系
- 等价:P * A * Q = B → 秩相等
- 相似:P^(-1) * A * P = B → 秩相等且特征值相等
- 合同:C^T * A * C = B → 秩相等且正负惯性值相等(正惯性值为正的特征值数量)
相似应该说是最重要的,这里再总结一点相似不变性:
- 两者的秩相等
- 两者的行列式值相等
- 两者的迹数相等
- 两者拥有同样的特征值,尽管相应的特征向量一般不同
- 两者拥有同样的特征多项式
- 两者拥有同样的敛散性
还有一点:相似必合同,合同必等价;还有一些更特殊的,例如正交(酉)相似,正交(酉)等价...
AB = BA ⇒ A,B 可交换;可交换的一些证明可以说很恶心,但是又得需要掌握
- B 的特征子空间是 A 对应的线性变换的不变子空间(相反同理)
- A 与 B 有公共的特征向量 ← 不变子空间必含有线性变换的一个特征向量
- A 与 B 可以由相同的可逆矩阵 S 使其对角化
- A 与 B 由相同的酉矩阵 U 使其 Schur 分解
这里不证明了,给出几个我当初的参考链接,大家有需要的话也可以去看一下:
高等代数证明: 如果AB=BA,则A和B有公共的特征向量
设T是n维复线性空间V上的线性变换,W是T的不变子空间,证明,必有T的特征向量属于W
两个矩阵同时对角化的条件_陈现平
矩阵A、B可交换,且都可对角化,证明存在可逆矩阵P使得,P^(-1)AP 和 p^(-1)AP 都是对角矩阵
设A,B∈C(n*n),都是正规矩阵,切AB=BA。则存在酉矩阵V,使与C,D都是对角阵
特殊矩阵
- 可对角化矩阵:具体看第一部分的对角化条件
- 对称矩阵(Hermit 矩阵):A^T = A ; A^H = A
- 正交矩阵(酉矩阵):A^T * A = A * A^T = E
- 正交矩阵行列式 ±1,酉矩阵行列式 1
- 可逆
- 正交矩阵的逆矩阵仍然是正交矩阵
- 正交矩阵之间乘积的结果仍然是正交矩阵
- 正交矩阵的行和列向量组是空间上的标准正交基
- 幂等矩阵:P^2 = P
- P^H 与 (E - P) 也是幂等矩阵
- P 的特征值为 0 或 1
- P 可以相似对角化
- F^n = N(P) ⊕ R(P)
- 正规矩阵:A^T * A = A * A^T
- 对角、对称、正交都是正规矩阵
- 正规矩阵酉相似于对角矩阵
- 正规矩阵的特征向量是正交的
- 正定矩阵:对于任意非负向量 x 且 A 是对称的,x^T * A * x> 0
- 可逆矩阵:方阵 A 非奇异,行列式不为零