可逆矩阵的秩等于矩阵的阶数_矩阵论一些总结点

本文总结了矩阵论中的关键概念和性质,包括对角化的条件、矩阵的秩与其特征值的关系、矩阵运算对秩的影响,以及矩阵间的等价、相似和合同关系等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

d25c840c12c2e613abfaded268a7c234.png

两周前考完了矩阵论,本来想把整本书的要点都扔上来,感觉没这个必要,就放一些总结性的东西吧!(排版比较简陋,大家凑活看吧

对角化的充要条件

  • 矩阵有 n 个特征向量
  • 矩阵的 s 重特征值对应有 s 个特征向量
  • 矩阵的最小多项式为一次因子的乘积
  • 矩阵的 Jordan 标准形全部是由一阶的 Jordan 块构成

矩阵的秩

秩最直观的就是化简为行最简形或等价标准形来直接看出来,而这两种形状最常见的用途就是用来解矩阵对应的线性方程组的解,所以遇到秩可以往对应的 Ax = 0 齐次方程组上靠。 矩阵的秩还反映了矩阵中线性无关的向量数量 ⇒ 矩阵行、列空间的维数等于秩,即 dim(R(A)) = dim(C(A)) = rankA 秩与特征值之间完全没有关系,但是和特征值的数量有一点关系:矩阵的秩 ≥ 其非零特征值个数

  • 相等情况:矩阵可以相似对角化,易得相似变换不改变秩 所以对角矩阵的秩 = 其对角线非零元素个数 = 矩阵非零特征值个数
  • 一般情况:矩阵相似于 Jordan 标准形,零特征值对应的 Jordan 块可能不是零矩阵 所以就占用了秩,导致非零特征值减少

秩等于非零奇异值的数量 ⇒ 由于 rankA = rank(A^H * A),因为 A^H * A 是正规矩阵,所以能够相似对角化 ⇒ 所以 rank(A^H * A) = 非零特征值个数 = 非零奇异值个数 = rankA 矩阵的运算对于秩的影响总结:

  • rankA + rankB - n ≤ rankAB
  • rankA* = n - rankA = n; 1 - rankA = n - 1; 0 - rankA < n - 1
  • rank(A^H * A) = rank(A * A^H) = rankA
  • rank(AB) ≤ min(rankA, rankB)
  • rankA + rankB ≥ rankAB

矩阵之间的关系

  • 等价:P * A * Q = B → 秩相等
  • 相似:P^(-1) * A * P = B → 秩相等且特征值相等
  • 合同:C^T * A * C = B → 秩相等且正负惯性值相等(正惯性值为正的特征值数量)

相似应该说是最重要的,这里再总结一点相似不变性:

  • 两者的秩相等
  • 两者的行列式值相等
  • 两者的迹数相等
  • 两者拥有同样的特征值,尽管相应的特征向量一般不同
  • 两者拥有同样的特征多项式
  • 两者拥有同样的敛散性

还有一点:相似必合同,合同必等价;还有一些更特殊的,例如正交(酉)相似,正交(酉)等价...

AB = BA ⇒ A,B 可交换;可交换的一些证明可以说很恶心,但是又得需要掌握

  • B 的特征子空间是 A 对应的线性变换的不变子空间(相反同理)
  • A 与 B 有公共的特征向量 ← 不变子空间必含有线性变换的一个特征向量
  • A 与 B 可以由相同的可逆矩阵 S 使其对角化
  • A 与 B 由相同的酉矩阵 U 使其 Schur 分解

这里不证明了,给出几个我当初的参考链接,大家有需要的话也可以去看一下:

高等代数证明: 如果AB=BA,则A和B有公共的特征向量

设T是n维复线性空间V上的线性变换,W是T的不变子空间,证明,必有T的特征向量属于W

两个矩阵同时对角化的条件_陈现平

矩阵A、B可交换,且都可对角化,证明存在可逆矩阵P使得,P^(-1)AP 和 p^(-1)AP 都是对角矩阵

设A,B∈C(n*n),都是正规矩阵,切AB=BA。则存在酉矩阵V,使与C,D都是对角阵

特殊矩阵

  • 可对角化矩阵:具体看第一部分的对角化条件
  • 对称矩阵(Hermit 矩阵):A^T = A ; A^H = A
  • 正交矩阵(酉矩阵):A^T * A = A * A^T = E
    • 正交矩阵行列式 ±1,酉矩阵行列式 1
    • 可逆
    • 正交矩阵的逆矩阵仍然是正交矩阵
    • 正交矩阵之间乘积的结果仍然是正交矩阵
    • 正交矩阵的行和列向量组是空间上的标准正交基
  • 幂等矩阵:P^2 = P
    • P^H 与 (E - P) 也是幂等矩阵
    • P 的特征值为 0 或 1
    • P 可以相似对角化
    • F^n = N(P) ⊕ R(P)
  • 正规矩阵:A^T * A = A * A^T
    • 对角、对称、正交都是正规矩阵
    • 正规矩阵酉相似于对角矩阵
    • 正规矩阵的特征向量是正交的
  • 正定矩阵:对于任意非负向量 x 且 A 是对称的,x^T * A * x> 0
  • 可逆矩阵:方阵 A 非奇异,行列式不为零
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值