一、概念题(含不等式性质的运用)
例1下 列说法错误的是( ).
A.若a>b,则a-c>b-c
B.若a-c>b-c,则a>b
C.若a>b,则ac > be2
D.若ac'>be2 ,则a>b
解
根据不等式的性质,对各个选项逐一判断,选 C.
要点指导:应密切关注“0”存在与否,以防掉进“0"的陷阱.
解
由一元一次不等式的定义可知|m| =1,且 m-1≠0,得m= -1,从而原不等式即为-2x +4>0,其解集为x<2.
要点指导:基本概念不容忽视根据定义,掌握一元一次不等式的特征是解本题(或类似题型)的关键.
二、怎样解一元一 次不等式
主要依据不等式的解集的意义和不等式的性质求解,其一般步骤与解方程类似,通常按照去分母、去括号、移项合并同类项、系数化为1的步骤进行,并能具体情况具体对待.另一方面,要特别注意与解方程不同的地方.
解4(2x-1)≤3(3x +2) - 12,
8x-4≤9x +6-12,
8x-9x≤6-12 +4,-x≤-2,
得x≥2.所以原不等式的解集为x≥2,在数轴上表示为:(略)
要点指导:(1)在去分母或系数化为1时,若不等式的两边乘(或除以)同一个负数,要改变不等号的方向;
(2)常常会出现与解方程类似的错误,比如去分母时漏乘不带分母的项,移项时忘记改变该项的符号等;
(3)移项时,不等号的方向不变.想-想,为什么?
三、怎样解一元一次不等式组
主要依据不等式组的解集的意义求解,其- -般步骤是先分别求出各个不等式的解集,然后求其公共部分,即为不等式组的解集.
求公共部分,有数轴法和口诀法.数轴法是数形结合的方法,清晰直观,通俗易懂,对数轴法所画的示意图的本义要讲仔细,讲明白,让同学们真正理解到位口诀法的优点是解题速度快,要在充分理解的基础上记住口诀,熟练运用对于只有两个不等式构成的不等式组,各自化简后可归结为四种基本情形,其求解口诀为:同大取大,同小取小,大小小大中间找(取中间),大大小小无处找(无解了).
对于由多个不等式构成的不等式组,各自化简后可先将所有不等式归为两类,大于的一类,小于的一类,其口诀为:同大取最大,同小取最小,然后归结为另外两种基本情形继续求解.
四、求不等式(组)的特殊解
类型对策:通常是先求出不等式(组)的解集,然后从中找出符合题意要求的特殊解.可具体参看上述例4,重点是后半部分.
五、解带有参数的不等式(组)
类型对策:解含参数的不等式(组),在参数的取值不能确定的情况下,应该对参数进行讨论.是否需要全面讨论,如何分段,要视具体情况而定.
要点指导:在解含参数的不等式组时,要善于对照解普通不等式组的四种基本情形(包括各自的结论),正确运用口诀法,还要能逆向使用,全面考虑(包括端点),灵活运用.例5用到“同小取小”与“同大取大”这两种情形;例6是逆向使用,用到“大小小大中间找”与“大大小小无处找”这两种情形
六、怎样求解不等式(组)中的参数
不等式(组)中的参数求解问题,往往是与不等式(组)的解集相关的问题,就是说已经知道了某不等式(组)的解集或解集的部分信息,反过来求出该不等式(组)中参数的取值(或取值范围).类型对策(常用的方法):(1)逆用不等式(组)的解集确定;(2)借助数轴确定;(3)分类讨论确定.
要点指导:(1)先求出关于变量的不等式(组)的解集(可用含参数的代数式表示) ,然后根据其它已知条件列出关于参数的数学式子,继而求解;
(2)特别要注意,类似于例8这样的题型,含参数的代数式的取值不是只有一个数,而是一个区间(取值范围) ,还要仔细考察在两个端点是否应该取等号.
七、在参数可确定的情况下,怎样解不等式(组)
类型对策:通常应根据已知条件,先求出参数或相关系数的取值(或范围),再求不等式(组)的解集.这类问题的求解,不宜对参数作泛泛的讨论.
要点指导:(1)根据不等式(组)的解集的两种表示形式应该是一-致的,列出关于参数的方程(组),求出参数后,代人所要求解的不等式(组) ,继而求解;
(2)本题两个参数a、b的取值都是唯--确定的.除上述内容外,不等式(组)求解的主要类型还有:可化为一元一次不等式(组)的问题,与数学其它知识点的综合运用,在实际问题中的应用等,可谓五彩缤纷.
本文由初中化学大师原创,欢迎关注,一起涨知识!
允许非盈利性引用,并请注明出处:“转载自初中化学大师”字样,以尊重作者的劳动成果