不等式两边加绝对值_学术讨论(一):和差化积公式及绝对值不等式的推导

本文讲述了在教师资格证备考过程中遇到的两个问题,即和差化积公式的证明及其应用,以及绝对值三角不等式的证明方法。通过理解关键步骤,如利用两角和差公式构造框架和设未知数求解,来掌握和差化积。同时,讨论了绝对值和平方的关系在证明中的作用,指出平方可以消除绝对值,这对于研究函数单调性和最值至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这段时间开始准备教师资格证的备考,在复习学科基础知识时碰到了两个问题,在认真思考和查阅资料之后,顺利解决了这两个问题。

一、和差化积公式的证明

e7d3389743d4ea44cdb72fee73c0e49f.png

f2c3b370b3eadbe3b78985fa9f1f16dd.png

认识:

1、虽然高中阶段不要求和差化积公式的记忆,但此前在高数和概率论的学习中多次遇到这个公式的运用,所以还是有必要学习了解该公式的

2、我列举了四组公式,其中Sin系列出现的频率要高于Cos系列,但是Sin系列的结果相对好记一点。我不建议记住这些公式,因为符号很容易记错,只要理解这个证明过程中的关键两步:

  • 利用两角和及两角差的三角公式做差/加和导出基本框架

  • 设未知数求解阿尔法和贝塔

二、绝对值三角不等式的证明

09685e5b0f69c31e2cbcac9648ad385e.png

9e8bd2c6bf7eacdd869f3a6b31420673.png

认识:

1、方法一利用反证法推出原始条件,之后反向写出过程;方法二利用数学中对代数的理解看待该公式(非严格证明)

2、绝对值和平方的关系。在研究问题中,绝对值和平方通常有一定的联系。比如此题关于绝对值三角不等式的证明,多个绝对值的设置是证明的难点。所以说将等式两边平方的目的是为了去绝对值;可以马上打开思路;还有更常用到的一点是当我们去研究某个复合函数的单调性(最值等),采用的复合形式中就包含绝对值函数和平方函数这两种,而且最最最关键的是对同一个表达式来说,它的绝对值函数和平方函数的单调性是相同的(以X=0这一点为分隔点,两端单调性完全相反),所以可以根据研究对象的不同,灵活选用其中一种研究函数的单调性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值