这段时间开始准备教师资格证的备考,在复习学科基础知识时碰到了两个问题,在认真思考和查阅资料之后,顺利解决了这两个问题。
一、和差化积公式的证明
认识:
1、虽然高中阶段不要求和差化积公式的记忆,但此前在高数和概率论的学习中多次遇到这个公式的运用,所以还是有必要学习了解该公式的
2、我列举了四组公式,其中Sin系列出现的频率要高于Cos系列,但是Sin系列的结果相对好记一点。我不建议记住这些公式,因为符号很容易记错,只要理解这个证明过程中的关键两步:
利用两角和及两角差的三角公式做差/加和导出基本框架
设未知数求解阿尔法和贝塔
二、绝对值三角不等式的证明
认识:
1、方法一利用反证法推出原始条件,之后反向写出过程;方法二利用数学中对代数的理解看待该公式(非严格证明)
2、绝对值和平方的关系。在研究问题中,绝对值和平方通常有一定的联系。比如此题关于绝对值三角不等式的证明,多个绝对值的设置是证明的难点。所以说将等式两边平方的目的是为了去绝对值;可以马上打开思路;还有更常用到的一点是当我们去研究某个复合函数的单调性(最值等),采用的复合形式中就包含绝对值函数和平方函数这两种,而且最最最关键的是对同一个表达式来说,它的绝对值函数和平方函数的单调性是相同的(以X=0这一点为分隔点,两端单调性完全相反),所以可以根据研究对象的不同,灵活选用其中一种研究函数的单调性