一个圆怎么平分三份_阿波罗尼斯圆怎么用?

大家应该都知道

到两定点的距离之和为定值(比这两点之间的距离要大)的点的轨迹是椭圆。 到两定点的距离之差为定值(比这两点之间的距离要小)的点的轨迹是双曲线。

那么

到两定点的距离之商为定值的点的轨迹是什么呢?

首先来简单探究一下

看图

0f1f84704c26949cda5f8b59bb3525a3.png

已知:PA/PB=k,求证P的轨迹在一个定圆上

证明:取AB的内分点M,使PA:PB=AM;MB=k,所以有PM平分∠APB
(为什么就平分了?三角形内角平分线定理学过吧,逆向运用一下就可以了)
再取AB的外分点N使得PA:PB=AN:BN=k,所以同样有PN平分∠BPE
(这个是什么,三角形的外角平分线定理)
好了,PM平分∠APB,PN平分∠BPE,且有∠APB+∠BPE=180°,所以∠MPN=90°
则有P在以MN为圆,MN中点为圆心的定圆上

实际上这个也就是阿波罗尼斯圆

那知道这个有什么用呢?

有些题目中他就会大显神威,大大省去计算量

比如:

088bb866601d60e8e0547aac72bc5a08.png

嗯根式下多元变量求最值,多元变量还在圆上

首先应该想到哪些解题方法

换元法? 参数方程? 不等式? 距离公式?

这是一个小学弟问我的题目,我在群里发给了大家去做

大家都还挺不错的,各种方法的都去尝试了一下

这里就不多讲了,换元、参数方程法在这里都对这个题目难以解决,所以想想几何意义,适用距离公式

:配凑距离公式出来

利用

352a533db45552b51e7b4eb5e5299555.png

原式可以化为

d5cd2022cfd35be1b0951184b89319d5.png

设A(0,3),B(1,0)

上面式子实质是什么,3PB+PA

0f9f020dc80d0471f6082504ac90ef94.png

注意到P点在圆x²+y²=4上,,P的轨迹为圆呀圆

什么时候P的轨迹在圆上
P点到A的距离与P点到某另外一点A’距离之比为定值时候P在定圆上
同样的P点到B点的距离与P点到某另外一点B’距离之比为定值时候P在定圆上
且有P所在圆的圆心为原点(0,0),半径为2

是不是可以求出另外那个某一点了

实际上就是阿波罗尼斯圆的逆向运用

e463ce643ea3197b2146ccadf71424f2.png
PA:PA’=AM:MA’=AN:A’N
设A’纵坐标为y
则有AM=1,MA’=2-y,AN=5,A’N=y+2
1:(2-y)=5:(y+2)
解得y=4/3
所以PA:PA’=1:2/3=3/2
PA=3/2×PA’
同理可以解得B’横坐标为x=4
PB=1/2×PB’ 3PB+PA=3/2×(PA’+PB’)

48c934e22a458450ce8e15b16d00409a.png

所以3PB+PA=3/2×(PA’+PB’)≥3/2×A’B’=2√10

问题得以解决

阿波罗尼斯圆在解决这种最值问题上用处是很大的(其实在以前的高考中是常考的内容,现在在某些模拟卷中也被常提了出来)

至于新高考考不考,学长不是出题的不知道,但是会了总是好的

最后来两个练习

fb7e29d88e16e8fa0652b3a7fd35f358.png

314733b87eb8c2e9887b03d9fdee81d5.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值