大家应该都知道
到两定点的距离之和为定值(比这两点之间的距离要大)的点的轨迹是椭圆。 到两定点的距离之差为定值(比这两点之间的距离要小)的点的轨迹是双曲线。
那么
到两定点的距离之商为定值的点的轨迹是什么呢?
首先来简单探究一下
看图

已知:PA/PB=k,求证P的轨迹在一个定圆上
证明:取AB的内分点M,使PA:PB=AM;MB=k,所以有PM平分∠APB
(为什么就平分了?三角形内角平分线定理学过吧,逆向运用一下就可以了)
再取AB的外分点N使得PA:PB=AN:BN=k,所以同样有PN平分∠BPE
(这个是什么,三角形的外角平分线定理)
好了,PM平分∠APB,PN平分∠BPE,且有∠APB+∠BPE=180°,所以∠MPN=90°
则有P在以MN为圆,MN中点为圆心的定圆上
实际上这个也就是阿波罗尼斯圆
那知道这个有什么用呢?
有些题目中他就会大显神威,大大省去计算量
比如:

嗯根式下多元变量求最值,多元变量还在圆上
首先应该想到哪些解题方法
换元法? 参数方程? 不等式? 距离公式?
这是一个小学弟问我的题目,我在群里发给了大家去做
大家都还挺不错的,各种方法的都去尝试了一下
这里就不多讲了,换元、参数方程法在这里都对这个题目难以解决,所以想想几何意义,适用距离公式
解:配凑距离公式出来
利用

原式可以化为

设A(0,3),B(1,0)
上面式子实质是什么,3PB+PA

注意到P点在圆x²+y²=4上,,P的轨迹为圆呀圆
什么时候P的轨迹在圆上
P点到A的距离与P点到某另外一点A’距离之比为定值时候P在定圆上
同样的P点到B点的距离与P点到某另外一点B’距离之比为定值时候P在定圆上
且有P所在圆的圆心为原点(0,0),半径为2
是不是可以求出另外那个某一点了
实际上就是阿波罗尼斯圆的逆向运用

PA:PA’=AM:MA’=AN:A’N
设A’纵坐标为y
则有AM=1,MA’=2-y,AN=5,A’N=y+2
1:(2-y)=5:(y+2)
解得y=4/3
所以PA:PA’=1:2/3=3/2
PA=3/2×PA’
同理可以解得B’横坐标为x=4
PB=1/2×PB’ 3PB+PA=3/2×(PA’+PB’)

所以3PB+PA=3/2×(PA’+PB’)≥3/2×A’B’=2√10
问题得以解决
阿波罗尼斯圆在解决这种最值问题上用处是很大的(其实在以前的高考中是常考的内容,现在在某些模拟卷中也被常提了出来)
至于新高考考不考,学长不是出题的不知道,但是会了总是好的
最后来两个练习

