java 验证码 去噪_java 验证码识别

48304ba5e6f9fe08f3fa1abda7d326ab.png

import org.apache.http.HttpStatus;

import org.apache.http.StatusLine;

import org.apache.http.client.methods.CloseableHttpResponse;

import org.apache.http.client.methods.HttpGet;

import org.apache.http.impl.client.CloseableHttpClient;

import org.apache.http.impl.client.HttpClientBuilder;

import javax.imageio.ImageIO;

import java.awt.*;

import java.awt.image.BufferedImage;

import java.io.File;

import java.io.FileOutputStream;

import java.io.InputStream;

import java.net.URL;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

/**

* temp

* train

* result

*/

public class BaoJianHui {

private static Map trainMap = null;

private static int index = 0;

public static final String dirPath = "D:\\Proli\\pic\\One\\";

public static boolean isBlack(int colorInt) {

Color color = new Color(colorInt);

return color.getRed() + color.getGreen() + color.getBlue() <= 100;

}

public static boolean isWhite(int colorInt) {

Color color = new Color(colorInt);

return color.getRed() + color.getGreen() + color.getBlue() > 100;

}

private static boolean isRemove(int rgb) {

Color color = new Color(rgb);

return color.getRed() == 244 ||

color.getRed() == 255 ||

color.getRed() == 241 ||

color.getRed() == 251 ||

color.getRed() == 247 ||

color.getRed() == 253;

}

/**

* 获得二值化图像

* 最大类间方差法

*

* @param gray

* @param width

* @param height

*/

private static int getOstu(int[][] gray, int width, int height) {

int grayLevel = 256;

int[] pixelNum = new int[grayLevel];

//计算所有色阶的直方图

for (int x = 0; x < width; x++) {

for (int y = 0; y < height; y++) {

int color = gray[x][y];

pixelNum[color]++;

}

}

double sum = 0;

int total = 0;

for (int i = 0; i < grayLevel; i++) {

sum += i * pixelNum[i]; //x*f(x)质量矩,也就是每个灰度的值乘以其点数(归一化后为概率),sum为其总和

total += pixelNum[i]; //n为图象总的点数,归一化后就是累积概率

}

double sumB = 0;//前景色质量矩总和

int threshold = 0;

double wF = 0;//前景色权重

double wB = 0;//背景色权重

double maxFreq = -1.0;//最大类间方差

for (int i = 0; i < grayLevel; i++) {

wB += pixelNum[i]; //wB为在当前阈值背景图象的点数

if (wB == 0) { //没有分出前景后景

continue;

}

wF = total - wB; //wB为在当前阈值前景图象的点数

if (wF == 0) {//全是前景图像,则可以直接break

break;

}

sumB += (double) (i * pixelNum[i]);

double meanB = sumB / wB;

double meanF = (sum - sumB) / wF;

//freq为类间方差

double freq = (double) (wF) * (double) (wB) * (meanB - meanF) * (meanB - meanF);

if (freq > maxFreq) {

maxFreq = freq;

threshold = i;

}

}

return threshold;

}

/**

* 图片预处理 灰度化、二值化、去噪

* @param picFile

* @return

* @throws Exception

*/

public static BufferedImage removeBackgroud(String picFile) throws Exception {

BufferedImage img = ImageIO.read(new File(picFile));

int width = img.getWidth();

int height = img.getHeight();

double Wr = 0.299;

double Wg = 0.587;

double Wb = 0.114;

int[][] gray = new int[width][height];

//灰度化

for (int x = 0; x < width; x++) {

for (int y = 0; y < height; y++) {

Color color = new Color(img.getRGB(x, y));

int rgb = (int) ((color.getRed() * Wr + color.getGreen() * Wg + color.getBlue() * Wb) / 3);

gray[x][y] = rgb;

}

}

int threshold = getOstu(gray, width, height);

for (int x = 0; x < width; ++x) {

for (int y = 0; y < height; ++y) {

if (gray[x][y] > threshold) {

img.setRGB(x, y, Color.white.getRGB());

} else {

img.setRGB(x, y, Color.black.getRGB());

}

}

}

//去噪

for (int x = 0; x < width; ++x) {

for (int y = 0; y < height; ++y) {

if (isBlack(img.getRGB(x, y))) {

if (isAlone(img, x, y,width,height)) {

img.setRGB(x, y, Color.WHITE.getRGB());

}

}

}

}

return img;

}

public static BufferedImage removeBackgroud(BufferedImage img) throws Exception {

int width = img.getWidth();

int height = img.getHeight();

double Wr = 0.299;

double Wg = 0.587;

double Wb = 0.114;

int[][] gray = new int[width][height];

//灰度化

for (int x = 0; x < width; x++) {

for (int y = 0; y < height; y++) {

Color color = new Color(img.getRGB(x, y));

int rgb = (int) ((color.getRed() * Wr + color.getGreen() * Wg + color.getBlue() * Wb) / 3);

gray[x][y] = rgb;

}

}

int ostu = getOstu(gray, width, height);

for (int x = 0; x < width; ++x) {

for (int y = 0; y < height; ++y) {

if (gray[x][y] > ostu) {

img.setRGB(x, y, new Color(0xFFFFFF).getRGB());

} else {

img.setRGB(x, y, new Color(0x000000).getRGB());

}

}

}

//去噪

for (int x = 0; x < width; ++x) {

for (int y = 0; y < height; ++y) {

if (isBlack(img.getRGB(x, y))) {

if (isAlone(img, x, y,width,height)) {

img.setRGB(x, y, Color.WHITE.getRGB());

}

}

}

}

return img;

}

/**

* 是否单个噪点

* @param img

* @param x

* @param y

* @param width

* @param height

* @return

*/

private static boolean isAlone(BufferedImage img, int x, int y,int width,int height) {

if (x == 0 || width - x < 3 || y == 0 || height - y < 3) {

return true;

}

try {

// int a1 = img.getRGB(x - 1, y + 1);

int a2 = img.getRGB(x - 1, y);

// int a3 = img.getRGB(x - 1, y - 1);

int a4 = img.getRGB(x, y + 1);

int a5 = img.getRGB(x, y - 1);

// int a6 = img.getRGB(x + 1, y + 1);

int a7 = img.getRGB(x + 1, y);

// int a8 = img.getRGB(x + 1, y - 1);

// boolean b1 = isBlack(a1);

boolean b2 = isBlack(a2);

// boolean b3 = isBlack(a3);

boolean b4 = isBlack(a4);

boolean b5 = isBlack(a5);

// boolean b6 = isBlack(a6);

boolean b7 = isBlack(a7);

// boolean b8 = isBlack(a8);

ArrayList booleans = new ArrayList();

// booleans.add(isBlack(a1));

booleans.add(isBlack(a2));

// booleans.add(isBlack(a3));

booleans.add(isBlack(a4));

booleans.add(isBlack(a5));

// booleans.add(isBlack(a6));

booleans.add(isBlack(a7));

// booleans.add(isBlack(a8));

long count = booleans.stream().filter((a) -> a).count();

if (count < 1) {

return true;

}

} catch (Exception e) {

return false;

}

return false;

}

public static BufferedImage removeBlank(BufferedImage img) throws Exception {

int width = img.getWidth();

int height = img.getHeight();

int start = 0;

int end = 0;

Label1:

for (int y = 0; y < height; ++y) {

for (int x = 0; x < width; ++x) {

if (isBlack(img.getRGB(x, y))) {

start = y;

break Label1;

}

}

}

Label2:

for (int y = height - 1; y >= 0; --y) {

for (int x = 0; x < width; ++x) {

if (isBlack(img.getRGB(x, y))) {

end = y;

break Label2;

}

}

}

return img.getSubimage(0, start, width, end - start + 1);

}

public static List splitImage(BufferedImage img) throws Exception {

List subImgs = new ArrayList<>();

int width = img.getWidth();

int height = img.getHeight();

List weightlist = new ArrayList<>();

for (int x = 0; x < width; ++x) {

int count = 0;

for (int y = 0; y < height; ++y) {

if (isBlack(img.getRGB(x, y))) {

count++;

}

}

weightlist.add(count);

}

for (int i = 0; i < weightlist.size(); i++) {

int length = 0;

while (i < weightlist.size() && weightlist.get(i) > 0) {

i++;

length++;

}

if (length > 2) {

subImgs.add(removeBlank(img.getSubimage(i - length, 0, length, height)));

}

}

return subImgs;

}

public static Map loadTrainData() throws Exception {

if (trainMap == null) {

Map map = new HashMap<>();

File dir = new File(dirPath + "train");

File[] files = dir.listFiles();

for (File file : files) {

map.put(ImageIO.read(file), file.getName().charAt(0) + "");

}

trainMap = map;

}

return trainMap;

}

public static String getSingleCharOcr(BufferedImage img,

Map map) {

String result = "#";

int width = img.getWidth();

int height = img.getHeight();

int min = width * height;

for (BufferedImage bi : map.keySet()) {

int count = 0;

if (Math.abs(bi.getWidth() - width) > 2)

continue;

int widthmin = width < bi.getWidth() ? width : bi.getWidth();

int heightmin = height < bi.getHeight() ? height : bi.getHeight();

Label1:

for (int x = 0; x < widthmin; ++x) {

for (int y = 0; y < heightmin; ++y) {

if (isBlack(img.getRGB(x, y)) != isBlack(bi.getRGB(x, y))) {

count++;

if (count >= min) {

break Label1;

}

}

}

}

if (count < min) {

min = count;

result = map.get(bi);

}

}

return result;

}

public static String getTextByImageFileUrl(String file) throws Exception {

BufferedImage img = removeBackgroud(file);

List listImg = splitImage(img);

Map map = loadTrainData();

StringBuilder result = new StringBuilder();

for (BufferedImage bi : listImg) {

result.append(getSingleCharOcr(bi, map));

}

ImageIO.write(img, "JPG", new File(dirPath + "result/" + result + ".jpg"));

return result.toString();

}

public static String getTextByImageUrl(String url) throws Exception {

BufferedImage read = ImageIO.read(new URL(url));

BufferedImage img = removeBackgroud(read);

List listImg = splitImage(img);

Map map = loadTrainData();

StringBuilder result = new StringBuilder();

for (BufferedImage bi : listImg) {

result.append(getSingleCharOcr(bi, map));

}

ImageIO.write(img, "JPG", new File(dirPath + "result/" + result + ".jpg"));

return result.toString();

}

public static void downloadImage() {

CloseableHttpClient httpClient = HttpClientBuilder.create().build();

HttpGet httpGet = new HttpGet("http://iir.circ.gov.cn/web/servlet/ValidateCode");

httpGet.addHeader("Host", "game.tom.com");

httpGet.addHeader("User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36");

for (int i = 0; i < 30; i++) {

try {

CloseableHttpResponse execute = httpClient.execute(httpGet);

StatusLine statusLine = execute.getStatusLine();

int statusCode = statusLine.getStatusCode();

if (statusCode != HttpStatus.SC_OK) {

System.err.println("Method failed: " + statusLine);

}

InputStream inputStream = execute.getEntity().getContent();

FileOutputStream outputStream = new FileOutputStream(new File(dirPath + "temp/" + i + ".jpg"));

byte[] buff = new byte[1024];

int len = 0;

while((len = inputStream.read(buff, 0, 1024)) != -1){

outputStream.write(buff, 0, len);

}

inputStream.close();

outputStream.close();

// 读取内容

System.out.println(i + "OK!");

} catch (Exception e) {

e.printStackTrace();

} finally {

// 释放连接

httpGet.releaseConnection();

}

}

}

/**

* 训练数据

* @throws Exception

*/

public static void trainData() throws Exception {

File dir = new File(dirPath + "temp");

File[] files = dir.listFiles();

for (File file : files) {

//图片预处理 二值化、去噪

BufferedImage img = removeBackgroud(dirPath + "temp/" + file.getName());

//图片分割

List listImg = splitImage(img);

if (listImg.size() == 4) {

for (int j = 0; j < listImg.size(); ++j) {

ImageIO.write(listImg.get(j), "JPG", new File(dirPath + "train/" + file.getName().charAt(j) + "-" + (index++) + ".jpg"));

}

}

}

}

/**

* @param args

* @throws Exception

*/

public static void main(String[] args) throws Exception {

// downloadImage();//下载图片-保监会

// trainData();//训练图片

// String text = getTextByImageUrl("http://iir.circ.gov.cn/web/servlet/ValidateCode?time=123");//保监会

// String text = getTextByImageUrl("");//验证码地址

String text = getTextByImageFileUrl(dirPath + "temp/XbF9.jpg");

System.out.println(text);

}

}

48304ba5e6f9fe08f3fa1abda7d326ab.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值