python代码:
import cv2 as cv
import numpy as np
def sort_boxes(rois):
for i in range(0, len(rois)-1, 1):
for j in range(i, len(rois), 1):
x, y, w, h = rois[j]
if y < rois[i][1]:
bx, by, bw, bh = rois[i]
rois[i] = [x, y, w, h]
rois[j] = [bx, by, bw, bh]
return rois;
def get_template(binary, boxes):
x, y, w, h = boxes[0]
roi = binary[y:y+h, x:x+w]
return roi
def detect_defect(binary, boxes, tpl):
height, width = tpl.shape
index = 1
defect_rois = []
# 发现缺失
for x, y, w, h in boxes:
roi = binary[y:y + h, x:x + w]
roi = cv.resize(roi, (width, height))
mask = cv.subtract(tpl, roi)
se = cv.getStructuringElement(cv.MORPH_RECT, (5, 5), (-1, -1))
mask = cv.morphologyEx(mask, cv.MORPH_OPEN, se)
ret, mask = cv.threshold(mask, 0, 255, cv.THRESH_BINARY)
count = 0
for row in range(height):
for col in range(width):
pv = mask[row, col]
if pv == 255:
count += 1
if count > 0:
defect_rois.append([x, y, w, h])
cv.imwrite("./mask%d.png"%index, mask)
index += 1
return defect_rois
src = cv.imread("./test.jpg")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)
# 图像二值化
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
se = cv.getStructuringElement(cv.MORPH_RECT, (3, 3), (-1, -1))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
cv.imshow("binary", binary)
# 轮廓提取
out, contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
height, width = src.shape[:2]
rects = []
for c in range(len(contours)):
x, y, w, h = cv.boundingRect(contours[c])
area = cv.contourArea(contours[c])
if h > (height//2):
continue
if area < 150:
continue
rects.append([x, y, w, h])
# 排序轮廓
rects = sort_boxes(rects)
print(rects)
template = get_template(binary, rects);
# 填充边缘
for c in range(len(contours)):
x, y, w, h = cv.boundingRect(contours[c])
area = cv.contourArea(contours[c])
if h > (height//2):
continue
if area < 150:
continue
cv.drawContours(binary, contours, c, (0), 2, 8)
cv.imshow("template", template)
# 检测缺陷
defect_boxes = detect_defect(binary, rects, template)
for dx, dy, dw, dh in defect_boxes:
cv.rectangle(src, (dx, dy), (dx + dw, dy + dh), (0, 0, 255), 1, 8, 0)
cv.putText(src, "bad", (dx, dy), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 255, 0), 2)
index = 1
for dx, dy, dw, dh in rects:
cv.putText(src, "num:%d"%index, (dx-40, dy+15), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 0, 0), 1)
index += 1
cv.imshow("result", src)
cv.imwrite("./binary2.png", src)
cv.waitKey(0)
cv.destroyAllWindows()
C++代码:
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <math.h>
using namespace cv;
using namespace std;
void sort_box(vector<Rect> &boxes);
Mat get_template(Mat &binary, vector<Rect> rects);
void detect_defects(Mat &binary, vector<Rect> rects, Mat &tpl, vector<Rect> &defects);
int main(int argc, char** argv)
{
Mat src = imread("./test.jpg");
imshow("input", src);
// ��ֵͼ��
Mat gray, binary, result;
cvtColor(src, gray, COLOR_BGR2GRAY);
threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
imshow("binary", binary);
// ����ṹԪ��
Mat se = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
morphologyEx(binary, binary, MORPH_OPEN, se);
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
vector<Rect> rects;
findContours(binary.clone(), contours, hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE);
int height = src.rows;
for (size_t t = 0; t < contours.size(); t++) {
Rect rect = boundingRect(contours[t]);
double area = contourArea(contours[t]);
if (rect.height >(height / 2)) {
continue;
}
if (area < 150)
continue;
rects.push_back(rect);
}
sort_box(rects);
Mat tpl = get_template(binary, rects);
for (size_t t = 0; t < contours.size(); t++) {
Rect rect = boundingRect(contours[t]);
double area = contourArea(contours[t]);
if (rect.height >(height / 2)) {
continue;
}
if (area < 150)
continue;
drawContours(binary, contours, t, Scalar(0), 2, 8);
}
vector<Rect> defects;
for (int i = 0; i < rects.size(); i++) {
putText(src, format("num: %d", (i+1)), Point(rects[i].x-40, rects[i].y+15), FONT_HERSHEY_PLAIN, 1.0, Scalar(255, 0, 0), 1);
}
detect_defects(binary, rects, tpl, defects);
for (int i = 0; i < defects.size(); i++) {
rectangle(src, defects[i], Scalar(0, 0, 255), 1, 8, 0);
putText(src, "bad", Point(defects[i].x, defects[i].y), FONT_HERSHEY_PLAIN, 1.0, Scalar(0, 255, 0), 2);
}
// ��ʾ
imshow("result", src);
waitKey(0);
return 0;
}
void sort_box(vector<Rect> &boxes) {
int size = boxes.size();
for (int i = 0; i < size - 1; i++) {
for (int j = i; j < size; j++) {
int x = boxes[j].x;
int y = boxes[j].y;
int w = boxes[j].width;
int h = boxes[j].height;
if (y < boxes[i].y) {
Rect temp = boxes[i];
boxes[i] = boxes[j];
boxes[j] = temp;
}
}
}
}
Mat get_template(Mat &binary, vector<Rect> rects) {
return binary(rects[0]);
}
void detect_defects(Mat &binary, vector<Rect> rects, Mat &tpl, vector<Rect> &defects) {
int height = tpl.rows;
int width = tpl.cols;
int index = 1;
int size = rects.size();
for (int i = 0; i < size; i++) {
Mat roi = binary(rects[i]);
resize(roi, roi, tpl.size());
Mat mask;
subtract(tpl, roi, mask);
Mat se = getStructuringElement(MORPH_RECT, Size(5, 5), Point(-1, -1));
morphologyEx(mask, mask, MORPH_OPEN, se);
threshold(mask, mask, 0, 255, THRESH_BINARY);
int count = 0;
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
int pv = mask.at<uchar>(row, col);
if (pv == 255) {
count++;
}
}
}
if (count > 0) {
defects.push_back(rects[i]);
}
}
}
对于得到的刀片外接矩形,首先需要通过排序,确定他们的编号,然后根据模板进行相减得到与模板不同的区域,对这些区域进行形态学操作,去掉边缘细微差异,最终就得到了可以检出的缺陷或者划痕刀片。
OpenCV学习笔记代码,欢迎follow:
MachineLP/OpenCV-github.com