# 矩阵运算

Wikipedia – Matrix calculus
Wikipedia 上对于矩阵的微分描述得很详细。

# 矩阵的求导：

## 1. 矩阵 Y 对标量 $x_i$ 求导：

$\frac{\partial Y}{\partial x_{i}}=\begin{bmatrix} \frac{\partial Y_{ij}}{\partial x_{i}}\end{bmatrix}^T$

## 2. 标量 $y_i$ 对列向量 $x$ 求导：

$\frac{\partial y_i}{\partial x}=\begin{bmatrix} \frac{\partial y_{i}}{\partial x_{1}} \\ \frac{\partial y_{i}}{\partial x_{2}} \\ \vdots \end{bmatrix}$

## 3. 行向量 $y^T$ 对列向量 $x$ 求导：

$\frac{\partial y^T}{\partial x}=\frac {\begin{bmatrix} y_1&y_2&\cdots &y_n\end{bmatrix}}{\begin{bmatrix}x_1 \\ x_2 \\ \vdots \\x_n \end{bmatrix}}=\begin{bmatrix} \frac{\partial y_{1}}{\partial x} \\ \frac{\partial y_{2}}{\partial x} \\ \vdots \\ \frac {\partial y_{n}}{\partial x}\end{bmatrix}$

$\frac{\partial x^T}{x}=I$； ②$\frac{\partial {(Ax)}^T}{\partial x}=A^T$

## 4. 列向量 $y$ 对行向量 $x^T$ 求导：

$\frac{\partial y}{\partial x^T}=(\frac{\partial y^T}{\partial x})^T$

## 5. 向量积对列向量 $x$ 求导：

$\frac {\partial uv^T}{\partial x}=(\frac{\partial u}{\partial x})v^T+u(\frac{\partial v^T}{\partial x})$

$\frac {\partial vu^T}{\partial x}=(\frac{\partial u^T}{\partial x})v+u^T(\frac{\partial v^T}{\partial x})$

$\frac {\partial (x^TA)}{\partial x}=(\frac{\partial x^T}{\partial x})A+x^T(\frac{\partial A}{\partial x})=IA+0x^T=A$

$\frac{\partial (Ax)}{\partial x^T}=[\frac{\partial (x^TA^T)}{\partial x}]^T=(A^T)^T=A$

$\frac{\partial (x^TAx)}{\partial x}=(\frac{\partial x^T}{\partial x})Ax+[\frac{\partial (Ax)^T}{\partial x}]x=Ax+A^Tx$

## 6. 矩阵 $Y$ 对列向量 $x$ 求导：

$Y$$x$ 的每个分量求偏导构成一个超向量（该向量每个元素都为一个矩阵）

$\frac{\begin{bmatrix} \partial y_{ij} \end{bmatrix}}{\partial \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}}=\begin{bmatrix} \frac{\partial [y_{ij}]}{\partial x_1} \\ \frac{\partial [y_{ij}]}{\partial x_2}\\ \vdots \\ \frac{\partial [y_{ij}]}{\partial x_n}\end{bmatrix}$

## 7. 矩阵积对列向量 $x$ ：

$\frac{\partial(uv)}{\partial x}=(\frac{\partial u}{\partial x})v+u(\frac{\partial v}{\partial x})$

$\frac{\partial(x^TA)}{\partial x}=(\frac{\partial x^T}{\partial x})A+x^T(\frac{\partial A}{\partial x})=IA+x^T0=A$

## 8. 标量 $y_i$ 对矩阵 $X$ 的导数：

$y_i$$X$ 每个元素求导

$\frac{\partial y_i}{\partial X}=\frac{\partial y_i}{\partial [x_{ij}]}$

$y_i=u^TX^Tv=\sum\sum u(i)x(ij)v(j) \Rightarrow \frac{\partial y_i}{\partial X}=uv^T$

$y_i=u^TX^TXu$$\frac{\partial y_i}{\partial X}=2Xuu^T$

$y_i=(Xu-v)^T(Xu-v)$$\frac{\partial y_i}{\partial X}=\frac{\partial (u^TX^TXu-2v^TXu+v^Tv)}{\partial X}=2Xuu^T-2vu^T+0=2(Xu-v)u^T$

## 9. 矩阵 $Y$ 对矩阵 $X$ 求导：

$Y$ 的每个元素对 $X$ 求导，构成一个超级矩阵。

05-26 2万+

06-30 1348

05-17 236

06-20 5848

05-22 3030

10-29 4万+

03-25 608

01-05 146

07-22 38

#### MATLAB 矩阵操作

©️2020 CSDN 皮肤主题: 像素格子 设计师: CSDN官方博客

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。