在Python中,访问一个属性的优先级顺序按照如下顺序:
1:类属性
2:数据描述符
3:实例属性
4:非数据描述符
5:getattr()方法 这个方法的完整定义如下所示:
def __getattr(self,attr) :#attr是self的一个属性名
pass;
先来阐述下什么叫数据描述符。
数据描述符是指实现了get,set,del方法的类属性(由于Python中,一切皆是对象,所以你不妨把所有的属性也看成是对象)
PS:个人觉得这里最好把数据描述符等效于定义了get,set,del三个方法的接口。
get,set,del阐述下这三个方法:
get的标准定义是get(self,obj,type=None),它非常接近于JavaBean的get
第一个函数是调用它的实例,obj是指去访问属性所在的方法,最后一个type是一个可选参数,通常为None(这个有待于进一步的研究)
例如给定类X和实例x,调用x.foo,等效于调用:
type(x).__dict__['foo'].__get__(x,type(x))
调用X.foo,等效于调用:
type(x).__dict__['foo'].__get__(None,type(x))
第二个函数set的标准定义是set(self,obj,val),它非常接近于JavaBean的set方法,其中最后一个参数是要赋予的值
第三个函数del的标准定义是del(self,obj),它非常接近Java中Object的Finailize()方法,指Python在回收这个垃圾对象时所调用到的析构函数,只是这个函数永远不会抛出异常。因为这个对象已经没有引用指向它,抛出异常没有任何意义。
优先级接下来,我们来一一比较这些优先级.
首先来看类属性
class A(object):
foo=1.3;
print str(A.__dict__);
输出:
{'__dict__': , '__module__': '__main__',
'foo': 1.3, '__weakref__': , '__doc__': None}
从上图可以看出foo属性在类的dict属性里,所以这里用A.foo可以直接找到。这里我们先跨过数据描述符,直接来看实例属性.
class A(object):
foo=1.3;
a=A();
print a.foo;
a.foo=15;
print a.foo;
这里a.foo先输出1.3后输出15,不是说类属性的优先级比实例属性的优先级高吗?按理a.foo应该不变才对?其实,这里只是一个假象,真正的原因在于这里将a.foo这个引用对象,不妨将其理解为可以指向任意数据类型的指针,指向了15这个int对象。
不信,可以继续看:
class A(object):
foo=1.3;
a=A();
print a.foo;
a.foo=15;
print a.foo;
del a.foo;
print a.foo;
这次在输出1.3,15后最后一次又一次的输出了1.3,原因在于a.foo最后一次又按照优先级顺序直接找到了类属性A.foo
描述器与对象属性OOP的理论中,类的成员变量包括属性和方法。那么在Python里什么是属性?修改上面的PythonSite类如下:
class PythonSite(object):
webframework = WebFramework()
version = 0.01
def __init__(self, site):
self.site = site
这里增加了一个version的类属性,以及一个实例属性site。分别查看一下类和实例对象的属性:
In [1]: pysite = PythonSite('ghost')
In [2]: vars(PythonSite).items()
Out[2]:
[('__module__', '__main__'),
('version', 0.01),
('__dict__', ),
('webframework', <__main__.webframework at>),
('__weakref__', ),
('__doc__', None),
('__init__', )]
In [3]: vars(pysite)
Out[3]: {'site': 'ghost'}
In [4]: PythonSite.__dict__
Out[4]:
,
'__doc__': None,
'__init__': ,
'__module__': '__main__',
'__weakref__': ,
'version': 0.01,
'webframework': <__main__.webframework at>}>
vars方法用于查看对象的属性,等价于对象的dict内容。从上面的显示结果,可以看到类PythonSite和实例pysite的属性差别在于前者有 webframework,version两个属性,以及 init方法,后者仅有一个site属性。
类与实例的属性类属性可以使用对象和类访问,多个实例对象共享一个类变量。但是只有类才能修改。
In [6]: pysite1 = PythonSite('ghost')
In [7]: pysite2 = PythonSite('admin')
In [8]: PythonSite.version
Out[8]: 0.01
In [9]: pysite1.version
Out[9]: 0.01
In [10]: pysite2.version
Out[10]: 0.01
In [11]: pysite1.version is pysite2.version
Out[11]: True
In [12]: pysite1.version = 'pysite1'
In [13]: vars(pysite1)
Out[13]: {'site': 'ghost', 'version': 'pysite1'}
In [14]: vars(pysite2)
Out[14]: {'site': 'admin'}
In [15]: PythonSite.version = 0.02
In [16]: pysite1.version
Out[16]: 'pysite1'
In [17]: pysite2.version
Out[17]: 0.02
正如上面的代码显示,两个实例对象都可以访问version类属性,并且是同一个类属性。当pysite1修改了version,实际上是给自己添加了一个version属性。类属性并没有被改变。当PythonSite改变了version属性的时候,pysite2的该属性也对应被改变。
属性访问的原理与描述器知道了属性访问的结果。这个结果都是基于Python的描述器实现的。通常,类或者实例通过.操作符访问属性。例如pysite1.site和pysite1.version的访问。先访问对象的dict,如果没有再访问类(或父类,元类除外)的dict。如果最后这个dict的对象是一个描述器,则会调用描述器的get方法。
In [21]: pysite1.site
Out[21]: 'ghost'
In [22]: pysite1.__dict__['site']
Out[22]: 'ghost'
In [23]: pysite2.version
Out[23]: 0.02
In [24]: pysite2.__dict__['version']
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
in ()
----> 1 pysite2.__dict__['version']
KeyError: 'version'
In [25]: type(pysite2).__dict__['version']
Out[25]: 0.02
In [32]: type(pysite1).__dict__['webframework']
Out[32]: <__main__.webframework at>
In [38]: type(pysite1).__dict__['webframework'].__get__(None, PythonSite)
Out[38]: 'Flask'
实例方法,类方法,静态方法与描述器调用描述器的时候,实际上会调用object.getattribute()。这取决于调用描述其器的是对象还是类,如果是对象obj.x,则会调用type(obj).dict['x'].get(obj, type(obj))。如果是类,class.x, 则会调用type(class).dict['x'].get(None, type(class)。
这样说还是比较抽象,下面来分析Python的方法,静态方法和类方法。把PythonSite重构一下:
class PythonSite(object):
webframework = WebFramework()
version = 0.01
def __init__(self, site):
self.site = site
def get_site(self):
return self.site
@classmethod
def get_version(cls):
return cls.version
@staticmethod
def find_version():
return PythonSite.version
类方法,@classmethod装饰器先看类方法,类方法使用@classmethod装饰器定义。经过该装饰器的方法是一个描述器。类和实例都可以调用类方法:
In [1]: ps = PythonSite('ghost')
In [2]: ps.get_version
Out[2]: >
In [3]: ps.get_version()
Out[3]: 0.01
In [4]: PythonSite.get_version
Out[4]: >
In [5]: PythonSite.get_version()
Out[5]: 0.01
get_version 是一个bound方法。下面再看下ps.get_version这个调用,会先查找它・的dict是否有get_version这个属性,如果没有,则查找其类。
In [6]: vars(ps)
Out[6]: {'site': 'ghost'}
In [7]: type(ps).__dict__['get_version']
Out[7]:
In [8]: type(ps).__dict__['get_version'].__get__(ps, type(ps))
Out[8]: >
In [9]: type(ps).__dict__['get_version'].__get__(ps, type(ps)) == ps.get_version
Out[9]: True
并且vars(ps)中,dict并没有get_version这个属性,依据描述器协议,将会调用type(ps).dict['get_version']描述器的get方法,因为ps是实例,因此object.getattribute()会这样调用get(obj, type(obj))。
现在再看类方法的调用:
In [10]: PythonSite.__dict__['get_version']
Out[10]:
In [11]: PythonSite.__dict__['get_version'].__get__(None, PythonSite)
Out[11]: >
In [12]: PythonSite.__dict__['get_version'].__get__(None, PythonSite) == PythonSite.get_version
Out[12]: True
因为这次调用get_version的是一个类对象,而不是实例对象,因此object.getattribute()会这样调用get(None, Class)。
静态方法,@staticmethod实例和类也可以调用静态方法:
In [13]: ps.find_version
Out[13]:
In [14]: ps.find_version()
Out[14]: 0.01
In [15]: vars(ps)
Out[15]: {'site': 'ghost'}
In [16]: type(ps).__dict__['find_version']
Out[16]:
In [17]: type(ps).__dict__['find_version'].__get__(ps, type(ps))
Out[17]:
In [18]: type(ps).__dict__['find_version'].__get__(ps, type(ps)) == ps.find_version
Out[18]: True
In [19]: PythonSite.find_version()
Out[19]: 0.01
In [20]: PythonSite.find_version
Out[20]:
In [21]: type(ps).__dict__['find_version'].__get__(None, type(ps))
Out[21]:
In [22]: type(ps).__dict__['find_version'].__get__(None, type(ps)) == PythonSite.find_version
Out[22]: True
和类方法差别不大,他们的主要差别是在类方法内部的时候,类方法可以有cls的类引用,静态访问则没有,如果静态方法想使用类变量,只能硬编码类名。
实例方法实例方法最为复杂,是专门属于实例的,使用类调用的时候,会是一个unbound方法。
In [2]: ps.get_site
Out[2]: >
In [3]: ps.get_site()
Out[3]: 'ghost'
In [4]: type(ps).__dict__['get_site']
Out[4]:
In [5]: type(ps).__dict__['get_site'].__get__(ps, type(ps))
Out[5]: >
In [6]: type(ps).__dict__['get_site'].__get__(ps, type(ps)) == ps.get_site
Out[6]: True
一切工作正常,实例方法也是类的一个属性,但是对于类,描述器使其变成了unbound方法:
In [7]: PythonSite.get_site
Out[7]:
In [8]: PythonSite.get_site()
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
in ()
----> 1 PythonSite.get_site()
TypeError: unbound method get_site() must be called with PythonSite instance as first argument (got nothing instead)
In [9]: PythonSite.get_site(ps)
Out[9]: 'ghost'
In [10]: PythonSite.__dict__['get_site']
Out[10]:
In [11]: PythonSite.__dict__['get_site'].__get__(None, PythonSite)
Out[11]:
In [12]: PythonSite.__dict__['get_site'].__get__(None, PythonSite) == PythonSite.get_site
Out[12]: True
In [14]: PythonSite.__dict__['get_site'].__get__(ps, PythonSite)
Out[14]: >
In [15]: PythonSite.__dict__['get_site'].__get__(ps, PythonSite)()
Out[15]: 'ghost'
由此可见,类不能直接调用实例方法,除非在描述器手动绑定一个类实例。因为使用类对象调用描述器的时候,get的第一个参数是None,想要成功调用,需要把这个参数替换为实例ps,这个过程就是对方法的bound过程。
实例按照之前的定义,一个实现了get,set,del的类都统称为数据描述符。我们来看下一个简单的例子.
class simpleDescriptor(object):
def __get__(self,obj,type=None) :
pass;
def __set__(self,obj,val):
pass;
def __del__(self,obj):
pass
class A(object):
foo=simpleDescriptor();
print str(A.__dict__);
print A.foo;
a=A();
print a.foo;
a.foo=13;
print a.foo;
这里get,set,del方法体内容都略过,虽然简单,但也不失为一个数据描述符。让我们来看下它的输出:
{'__dict__': , '__module__': '__main__',
'foo': <__main__.simpledescriptor object at>,
'__weakref__': ,
'__doc__': None}
None
None
None
从上图可以看出,尽管我们对a.foo赋值了,但其依然为None,原因就在于get方法什么都不返回。
为了更进一步的加深对数据描述符的理解,我们简单的作下改造.
class simpleDescriptor(object):
def __init__(self):
self.result=None;
def __get__(self,obj,type=None) :
return self.result-10;
def __set__(self,obj,val):
self.result=val+3;
print self.result;
def __del__(self,obj):
pass
class A(object):
foo=simpleDescriptor();
a=A();
a.foo=13;
print a.foo;
打印的输出结果为:
16
6
第一个16为我们在对a.foo赋值的时候,人为的将13加上3后作为foo的值,第二个6是我们在返回a.foo之前人为的将它减去了10。
所以我们可以猜测,常规的Python类在定义get,set方法的时候,如果无特殊需求,直接给对应的属性赋值或直接返回该属性值。如果自己定义类,并且继承object类的话,这几个方法都不用定义。
下面我们来看下实例属性和非数据描述符。
class B(object):
foo=1.3;
b=B();
print b.__dict__
#print b.bar;
b.bar=13;
print b.__dict__
print b.bar;
输出结果为:
{}
{'bar': 13}
13
可见这里在实例b.dict里找到了bar属性,所以这次可以获取13了
那么什么是非数据描述符呢?简单的说,就是没有实现get,set,del三个方法的所有类
让我们任意看一个函数的描述:
def hello():
pass
print dir(hello)
输出:
['__call__', '__class__', '__delattr__', '__dict__',
'__doc__',
'__get__',
'__getattribute__',
'__hash__', '__init__', '__module__', '__name__',
'__new__', '__reduce__',
'__reduce_ex__', '__repr__',
'__setattr__', '__str__', 'func_closure',
'func_code',
'func_defaults', 'func_dict', 'func_doc', 'func_globals', 'func_name']
从上面可以看出所有的函数都有get方法,但都没有set和del方法,所以所有的类成员函数都是非数据描述符。
看一个简单的例子:
class simpleDescriptor(object):
def __get__(self,obj,type=None) :
return 'get',self,obj,type;
class D(object):
foo=simpleDescriptor();
d=D();
print d.foo;
d.foo=15;
print d.foo;
输出:
('get', <__main__.simpledescriptor object at>,
<__main__.d object at>, )
15
可以看出实例属性掩盖了非数据描述符。
最后看下getatrr方法。它的标准定义是:getattr(self,attr),其中attr是属性名
让我们来看一个简单的例子:
class D(object):
def __getattr__(self,attr):
return attr;
#return self.attr;
d=D();
print d.foo,type(d.foo);
d.foo=15;
print d.foo;
输出:
foo
15
可以看的出来Python在实在找不到方法的时候,就会求助于getattr方法。
注意这里要避免无意识的递归,稍微改动下:
class D(object):
def __getattr__(self,attr):
#return attr;
return self.attr;
d=D();
print d.foo,type(d.foo);
d.foo=15;
print d.foo;
这次会直接抛出堆栈溢出的异常,就像下面这样:
RuntimeError: maximum recursion depth exceeded