本文实例为大家分享了tensorflow如何批量读取图片的具体代码,供大家参考,具体内容如下
代码:
import tensorflow as tf
import os
def picread(filelist):
"""
读取狗的图片并转换成张量
:param filelist: 文件路f径+名字的列表
:return: 每张图片的张量
"""
# 1.构造文件的队列
file_queue = tf.train.string_input_producer(filelist)
# 2.构造阅读器去读取图片内容(默认读取一张图片)
reader = tf.WholeFileReader()
key,value = reader.read(file_queue)
# 3.对读取的图片进行解码
image = tf.image.decode_jpeg(value)
# 4.处理图片的大小(统一大小)
image_resize = tf.image.resize_images(image,[200,200])
# 注意:一定要把样本的形状固定,在批处理中要求所有数据的形状必须固定
image_resize.set_shape([200,200,3])
# 5.进行批处理
image_resize_batch = tf.train.batch([image_resize],batch_size=3,num_threads=1,capacity=3)
return image_resize
#批处理大小,跟队列,数据的数量没有影响,只决定 这批次处理多少数据
if __name__ == "__main__":
# 1.找到文件,放入列表 路径+名字 ->列表当中
file_name = os.listdir("./data/dogpic/")
filelist = [os.path.join("./data/dogpic/",file) for file in file_name ]
image_batch= picread(filelist)
#开启会话运行结果
with tf.Session() as sess:
#定义一个线程协调器
coord = tf.train.Coordinator()
#开启读文件的线程
threads = tf.train.start_queue_runners(sess,coord=coord)
#打印读取的内容
print(sess.run([image_batch]))
#回收子线程
coord.request_stop()
coord.join(threads)
结果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。