张量转化成矩阵_代数学发展史: 张量代数

在高等代数课程中遇到的很多概念, 如行列式、矩阵、线性映射、线性变换、双线性函数和内积等, 都可以统一用一个非常重要的概念来表述, 这就是张量, 它在代数、几何、分析及物理等领域有广泛应用. 张量理论的发展要归功于两个意大利数学家——Gregorio Ricci-Curbastro (里奇, 1853–1925) 和他的学生Levi-Civita (1873–1941). 学过现代...
摘要由CSDN通过智能技术生成

在高等代数课程中遇到的很多概念, 如行列式、矩阵、线性映射、线性变换、双线性函数和内积等, 都可以统一用一个非常重要的概念来表述, 这就是张量, 它在代数、几何、分析及物理等领域有广泛应用. 张量理论的发展要归功于两个意大利数学家——Gregorio Ricci-Curbastro (里奇, 1853–1925) 和他的学生Levi-Civita (1873–1941). 

d7bda789f7010d6f4ee4925e6402806c.png   f7c3becadcf0a5f3ce5c568439bf282c.png

学过现代微分几何的都知道Levi-Civita 联络; 而Ricci 的大名更是如雷灌耳, Perelman 对Poincarè 的证明正是基于一个被称为Ricci 流的概念. 当然, Ricci 流实际上是R. Hamilton 与1981 年提出的, 不过其中的核心概念Ricci 曲率张量的确归功于Ricci. 1890 年, Ricci系统地发展了后来被称为张量分析的理论, Levi-Civita在1900 年将该理论发扬光大并为世人所知, Einstein 在1915 年提出的广义相对论完全是用张量的语言写出的.

据个人经验,本文的内容对于初学者来说非常重要,尽快习惯张量的语言对于深入代数、微分几何等领域是很有帮助的. 

张量积

张量可以看作是标量、向量、矩阵等概念的推广, 标量是0 阶张量, 向量是一阶张量, 而矩阵就是二阶张量. 如果把矩阵推广到高阶就是高阶张量, 而高阶张量实际上是由低阶张量利用一种乘法运算——张量积——得到的. 我们来看看如何由一阶张量即向量得到二阶张量.

理解张量积的最自然的方式可能是从双线性函数的角度来看. 设V,W 为域F 上的线性空间, 称二元函数h(α, β) 为V × W 上的双线性函数, 如果对任意2b8e90d13417519ffd2d0e78d39071b7.png

811b2df1a48366c1bfead80861beed52.png

双线性函数的全体自然构成一个线性空间B.

一个很自然的构造双线性函数的方法是取c56bde8ad27f19ce487893931e6f7f46.png, 定义

77d9af71401fdc6fce3c0495b3448484.png

容易验证h 是双线性函数, 记为f ⊗ g, 称为f 与g 的张量积. 所有形如f ⊗ g 生成的B 的子空间记为7425cfbda3d452fd8485c4163ce59541.png, 即

6c2c98834242d5c72ae65472d9c9fa40.png

我们称7425cfbda3d452fd8485c4163ce59541.png为V 与W 的张量积, 其中的元素称为张量. 需要注意的是: 上述定义中的求和是有限和, 并且7425cfbda3d452fd8485c4163ce59541.png 中的元素不一定能写成f ⊗ g 的形式, 而通常是一个线性组合.

我们知道, 任何线性空间13fc4b248d43ea095fdc0cc31ca93f46.png都可以看作00851534fd0e8f726d441d84abf645e6.png的对偶空间6f86d24936fc0eb60d3d9f733dd82b4f.png的子空间, 即对任意

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值