关于惯性张量的推导
对于刚体
A
A
A,其角动量为
E
=
∫
A
(
r
×
r
˙
)
d
m
E=\int_A(r\times\dot r)\,\mathrm dm
E=∫A(r×r˙)dm
显然该点的线速度与角速度之间有如下关系
r
˙
=
ω
×
r
\dot r=\omega\times r
r˙=ω×r
那么该物体的角动量
E
=
∫
A
r
×
(
ω
×
r
)
d
m
E=\int_Ar\times(\omega\times r)\,\mathrm dm
E=∫Ar×(ω×r)dm
根据向量三重积关系
a
×
(
b
×
c
)
=
(
a
⋅
c
)
b
−
(
a
⋅
b
)
c
a\times (b\times c)=(a\cdot c)b-(a\cdot b)c
a×(b×c)=(a⋅c)b−(a⋅b)c,有
E
=
∫
A
(
(
r
⋅
r
)
ω
−
(
r
⋅
ω
)
r
)
d
m
=
(
∫
A
(
(
r
⋅
r
)
I
−
r
r
T
)
d
m
)
ω
\begin{aligned} E&=\int_A((r\cdot r)\omega-(r\cdot\omega)r)\,\mathrm dm\\ &=\left(\int_A ((r\cdot r)I-rr^T) \,\mathrm dm\right)\omega \end{aligned}
E=∫A((r⋅r)ω−(r⋅ω)r)dm=(∫A((r⋅r)I−rrT)dm)ω
可以通过向量乘积和点积的定义证明 ( a ⋅ b ) a = a a T b (a\cdot b)a=aa^Tb (a⋅b)a=aaTb
故我们可以定义惯性张量为
I
=
(
∫
A
(
(
r
⋅
r
)
I
−
r
r
T
)
d
m
)
I=\left(\int_A ((r\cdot r)I-rr^T) \,\mathrm dm\right)
I=(∫A((r⋅r)I−rrT)dm)
这是一个与旋转轴无关的量。且角动量与只有如下关系
L
=
I
ω
L=I\omega
L=Iω
此外, I I I 还是一个对称矩阵
关于物体旋转后在世界坐标中的位置的推导
以上的所有求解过程都是以物体所在的空间为参照的,如果希望以世界坐标为参照,那么还需要进行变换。我们记物体所在的空间中物体的惯性张量为 I r e f I_{\rm ref} Iref,定义同上。
对于物体空间中的每一点
r
0
i
∈
R
3
r_{0i}\in\mathbb R^3
r0i∈R3,旋转平移后得到世界坐标中的位置
r
i
(
t
)
=
R
(
t
)
r
0
i
+
x
(
t
)
r_i(t)=R(t)r_{0i}+x(t)
ri(t)=R(t)r0i+x(t)
这表明了原来在物体空间中的物体首先绕质心做一个旋转,然后进行位移:
- r i ( t ) r_i(t) ri(t) 在世界坐标中 t t t 时刻所在的位置
- R ( t ) R(t) R(t) 世界坐标中 t t t 时刻对应的旋转矩阵,显然这是一个正交矩阵
- x ( t ) x(t) x(t) 世界坐标中质心在 t t t 时刻对应的位移
物体的运动可以分解为平移和旋转的叠加,即质心的运动和绕过质心的某一轴的旋转。在任意时刻
t
t
t,旋转的惯性张量定义为
I
=
∫
A
(
(
r
′
⋅
r
′
)
I
−
r
′
r
′
T
)
d
m
I=\int_A ((r'\cdot r')I-r'r'^T) \mathrm dm
I=∫A((r′⋅r′)I−r′r′T)dm
根据定义
r
′
=
r
(
t
)
−
x
(
t
)
=
R
(
t
)
r
0
r'=r(t)-x(t)=R(t)r_0
r′=r(t)−x(t)=R(t)r0,即世界坐标中任意质点的位置关于质心位置的位移。显然可以变形
I
(
t
)
=
∫
A
(
(
r
′
T
r
′
)
I
−
r
′
T
r
′
)
d
m
=
∫
A
(
r
0
T
R
T
(
t
)
R
(
t
)
r
0
I
−
R
(
t
)
r
0
r
0
T
R
T
(
t
)
)
d
m
=
∫
A
(
r
0
T
r
0
I
−
R
(
t
)
r
0
r
0
T
R
T
(
t
)
)
d
m
\begin{aligned} I(t) &= \int_A ((r'^Tr')I-r'^Tr') \,\mathrm dm \\ &= \int_A (r_0^TR^T(t)R(t)r_0I - R(t)r_0r_0^TR^T(t)) \,\mathrm dm \\ &= \int_A (r_0^Tr_0I - R(t)r_0r_0^TR^T(t)) \,\mathrm dm \end{aligned}
I(t)=∫A((r′Tr′)I−r′Tr′)dm=∫A(r0TRT(t)R(t)r0I−R(t)r0r0TRT(t))dm=∫A(r0Tr0I−R(t)r0r0TRT(t))dm
由于
r
0
T
r
0
r_0^Tr_0
r0Tr0 是标量,所以
r
0
T
r
0
I
=
R
(
t
)
r
0
T
r
0
I
R
T
(
t
)
r_0^Tr_0I=R(t)r_0^Tr_0IR^T(t)
r0Tr0I=R(t)r0Tr0IRT(t),故
I
(
t
)
=
∫
A
(
R
(
t
)
r
0
T
r
0
I
R
T
(
t
)
−
R
(
t
)
r
0
r
0
T
R
T
(
t
)
)
d
m
=
R
(
t
)
(
∫
A
(
r
0
T
r
0
I
−
r
0
r
0
T
)
d
m
)
R
T
(
t
)
=
R
(
t
)
I
r
e
f
R
T
(
t
)
\begin{aligned} I(t) &= \int_A (R(t)r_0^Tr_0IR^T(t) - R(t)r_0r_0^TR^T(t)) \,\mathrm dm \\ &= R(t)\left(\int_A (r_0^Tr_0I - r_0r_0^T) \,\mathrm dm\right)R^T(t) \\ &= R(t)I_{\rm ref}R^T(t) \end{aligned} \\
I(t)=∫A(R(t)r0Tr0IRT(t)−R(t)r0r0TRT(t))dm=R(t)(∫A(r0Tr0I−r0r0T)dm)RT(t)=R(t)IrefRT(t)
显然
I
−
1
(
t
)
=
R
(
t
)
I
r
e
f
−
1
R
T
(
t
)
I^{-1}(t)=R(t)I_{\rm ref}^{-1}R^T(t)
I−1(t)=R(t)Iref−1RT(t)