关于转动张量的一部分推导

关于惯性张量的推导

对于刚体 A A A,其角动量为
E = ∫ A ( r × r ˙ )   d m E=\int_A(r\times\dot r)\,\mathrm dm E=A(r×r˙)dm
显然该点的线速度与角速度之间有如下关系
r ˙ = ω × r \dot r=\omega\times r r˙=ω×r
那么该物体的角动量
E = ∫ A r × ( ω × r )   d m E=\int_Ar\times(\omega\times r)\,\mathrm dm E=Ar×(ω×r)dm
根据向量三重积关系 a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c a\times (b\times c)=(a\cdot c)b-(a\cdot b)c a×(b×c)=(ac)b(ab)c,有
E = ∫ A ( ( r ⋅ r ) ω − ( r ⋅ ω ) r )   d m = ( ∫ A ( ( r ⋅ r ) I − r r T )   d m ) ω \begin{aligned} E&=\int_A((r\cdot r)\omega-(r\cdot\omega)r)\,\mathrm dm\\ &=\left(\int_A ((r\cdot r)I-rr^T) \,\mathrm dm\right)\omega \end{aligned} E=A((rr)ω(rω)r)dm=(A((rr)IrrT)dm)ω

可以通过向量乘积和点积的定义证明 ( a ⋅ b ) a = a a T b (a\cdot b)a=aa^Tb (ab)a=aaTb

故我们可以定义惯性张量
I = ( ∫ A ( ( r ⋅ r ) I − r r T )   d m ) I=\left(\int_A ((r\cdot r)I-rr^T) \,\mathrm dm\right) I=(A((rr)IrrT)dm)
这是一个与旋转轴无关的量。且角动量与只有如下关系
L = I ω L=I\omega L=Iω

此外, I I I 还是一个对称矩阵

关于物体旋转后在世界坐标中的位置的推导

以上的所有求解过程都是以物体所在的空间为参照的,如果希望以世界坐标为参照,那么还需要进行变换。我们记物体所在的空间中物体的惯性张量为 I r e f I_{\rm ref} Iref,定义同上。

对于物体空间中的每一点 r 0 i ∈ R 3 r_{0i}\in\mathbb R^3 r0iR3,旋转平移后得到世界坐标中的位置
r i ( t ) = R ( t ) r 0 i + x ( t ) r_i(t)=R(t)r_{0i}+x(t) ri(t)=R(t)r0i+x(t)
这表明了原来在物体空间中的物体首先绕质心做一个旋转,然后进行位移:

  • r i ( t ) r_i(t) ri(t) 在世界坐标中 t t t 时刻所在的位置
  • R ( t ) R(t) R(t) 世界坐标中 t t t 时刻对应的旋转矩阵,显然这是一个正交矩阵
  • x ( t ) x(t) x(t) 世界坐标中质心在 t t t 时刻对应的位移

物体的运动可以分解为平移和旋转的叠加,即质心的运动和绕过质心的某一轴的旋转。在任意时刻 t t t,旋转的惯性张量定义为
I = ∫ A ( ( r ′ ⋅ r ′ ) I − r ′ r ′ T ) d m I=\int_A ((r'\cdot r')I-r'r'^T) \mathrm dm I=A((rr)IrrT)dm
根据定义 r ′ = r ( t ) − x ( t ) = R ( t ) r 0 r'=r(t)-x(t)=R(t)r_0 r=r(t)x(t)=R(t)r0,即世界坐标中任意质点的位置关于质心位置的位移。显然可以变形
I ( t ) = ∫ A ( ( r ′ T r ′ ) I − r ′ T r ′ )   d m = ∫ A ( r 0 T R T ( t ) R ( t ) r 0 I − R ( t ) r 0 r 0 T R T ( t ) )   d m = ∫ A ( r 0 T r 0 I − R ( t ) r 0 r 0 T R T ( t ) )   d m \begin{aligned} I(t) &= \int_A ((r'^Tr')I-r'^Tr') \,\mathrm dm \\ &= \int_A (r_0^TR^T(t)R(t)r_0I - R(t)r_0r_0^TR^T(t)) \,\mathrm dm \\ &= \int_A (r_0^Tr_0I - R(t)r_0r_0^TR^T(t)) \,\mathrm dm \end{aligned} I(t)=A((rTr)IrTr)dm=A(r0TRT(t)R(t)r0IR(t)r0r0TRT(t))dm=A(r0Tr0IR(t)r0r0TRT(t))dm
由于 r 0 T r 0 r_0^Tr_0 r0Tr0 是标量,所以 r 0 T r 0 I = R ( t ) r 0 T r 0 I R T ( t ) r_0^Tr_0I=R(t)r_0^Tr_0IR^T(t) r0Tr0I=R(t)r0Tr0IRT(t),故
I ( t ) = ∫ A ( R ( t ) r 0 T r 0 I R T ( t ) − R ( t ) r 0 r 0 T R T ( t ) )   d m = R ( t ) ( ∫ A ( r 0 T r 0 I − r 0 r 0 T )   d m ) R T ( t ) = R ( t ) I r e f R T ( t ) \begin{aligned} I(t) &= \int_A (R(t)r_0^Tr_0IR^T(t) - R(t)r_0r_0^TR^T(t)) \,\mathrm dm \\ &= R(t)\left(\int_A (r_0^Tr_0I - r_0r_0^T) \,\mathrm dm\right)R^T(t) \\ &= R(t)I_{\rm ref}R^T(t) \end{aligned} \\ I(t)=A(R(t)r0Tr0IRT(t)R(t)r0r0TRT(t))dm=R(t)(A(r0Tr0Ir0r0T)dm)RT(t)=R(t)IrefRT(t)
显然
I − 1 ( t ) = R ( t ) I r e f − 1 R T ( t ) I^{-1}(t)=R(t)I_{\rm ref}^{-1}R^T(t) I1(t)=R(t)Iref1RT(t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值