归一化处理公式_spss实现中心化处理、标准化处理和归一化处理

本文介绍了数据处理中的中心化、标准化和归一化概念,详细阐述了在SPSS中进行这些操作的步骤,包括如何计算新变量、观察变化以及它们在数据分析中的作用。通过实例展示了如何将数据转换为平均值为0、标准差为1的标准正态分布以及[0,1]之间的归一化数据。" 104926549,8442185,php-fpm安装与安全加固指南,"['后端开发', 'PHP', '服务器管理', '安全配置', 'Linux']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简单描述

  1. 意义:数据中心化和标准化在回归分析中是取消由于量纲不同、自身变异或者数值相差较大所引起的误差。

  2. 原理

    数据标准化:是指数值减去均值,再除以标准差;

    数据中心化:是指变量减去它的均值;

    归一化:把数变为(0,1)之间的小数。

二、中心化处理

        数据的中心化是指原数据减去该组数据的平均值,经过中心化处理后,原数据的坐标平移至中心点(0,0),该组数据的均值变为0,以此也被称为零均值化。

        简单举例:譬如某小公司老板员工共5人,5人的工资,分别为12000、5000、8000、3000、4000元,这5个数据作为一个独立的数据集,平均值为6400元,每个人的工资依次减去平均水平6400,得到5600、-1400、1600、-3400、-2400,新的5个数据其平均值等于0,这个过程就是数据的中心化。

        下面详细讲解在SPSS中的操作步骤。

        第一步:在分析选择描述统计,接着选择描述

dff4570e48bdaebf48e95d717aadabe0.png

        第二步:选择所要分析的变量,在选项中勾选平均值即可。

280c0dfcdd251d55f5d1449fbcc0d71b.png

        输出得到每个变量的平均

SPSS中,中心化对数比变换(clr)是一种常用的数据转换方法,用于将成分数据转换为真实空间。通过进行clr转换,可以对成分数据进行标准统计分析,如参数假设检验回归分析等。该方法将数据进行对数化,并进行中心化处理。具体步骤如下: 1. 首先,对数据进行对数化处理,可以使用SPSS的函数(如LOG函数)来完成对数化操作。 2. 然后,对对数化后的数据进行中心化处理,即将每个变量的值减去变量的均值,得到中心化后的数据。 3. 最后,可以使用中心化后的数据进行后续的统计分析,如回归分析等。 需要注意的是,clr转换是一种有益的数据分析工具,但在使用之前需要根据具体分析目的数据特点进行合理的选择应用。同时,SPSS软件提供了丰富的数据转换统计分析功能,可以帮助研究人员进行各种数据处理分析工作。 以上是关于中心化对数比变换(clr)在SPSS中的简要描述,希望能对您有所帮助。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [spss实现中心化处理标准化处理归一化处理](https://blog.csdn.net/shouji111111/article/details/88675289)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [数学建模学习(102):成分数据分析之中心对数比转换【已修改】](https://blog.csdn.net/weixin_46211269/article/details/127177660)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值