python实现lenet_LeNet - Python中的卷积神经网络

本教程将主要面向代码,旨在帮助您深入学习和卷积神经网络。由于这个意图,我不会花很多时间讨论激活功能,池层或密集/完全连接的层

- 将来会有很多教程在PyImageSearch博客上将覆盖每个层类型/概念在很多细节。

再次,本教程是您第一个端到端的例子,您可以训练一个现实的CNN(并在实际中看到它)。我们将在本系列帖子中稍后介绍激活功能,汇集层和完全连接层的细节(尽管您应该已经知道卷积运算的基本知识);但是在此期间,只需跟随,享受教训,并学习如何使用Python和Keras实现您的第一个卷积神经网络。

MNIST数据集

图1:MNIST数字识别数据集。

您可能已经看过MNIST数据集,无论是在PyImageSearch博客上还是在您研究的其他地方。在任何一种情况下,我将继续查看数据集,以确保您准确了解我们正在使用的数据。

MNIST数据集可以说是计算机视觉和机器学习文献中研究最多,数据最多的数据集,它是您在深入学习之旅中使用的出色的“第一个数据集”。

注意:正如我们将会发现的那样,即使在CPU上,在这个数据集上获得>

98%的分类精度也很容易,训练时间最短。

该数据集的目标是对手写数字0-9进行分类。我们共获得了7万张图像,通常有6万张图像用于培训,10,000张用于评估;但是,我们可以自由分割这些数据,因为我们认为合适。共同分拆包括标准60,000

/ 10,000,75%/ 25%和66.6%/ 33.3%。我将在博客文章中使用2/3的数据进行培训和1/3的数据进行测试。

每个数字表示为28 x 28  灰度图像(来自MNIST数据集的示例可以在上图中看到)。这些灰度像素强度是无符号整数,像素值落在[0,255]的范围内。所有数字都放置在黑色背景上,具有浅色前景(即,数字本身)为白色和各种灰色。

值得注意的是,许多库(如scikit-learn)都有内置的帮助方法来下载MNIST数据集,将其缓存到磁盘上,然后加载它。这些帮助方法通常将每个图像表示为784-d向量。

784号来自哪里?

简单。这只是平坦的  28

x 28 = 784的形象。

要从784-d矢量恢复我们的原始图像,我们简单地将阵列重塑为28×28图像。

在本博客的上下文中,我们的目标是培训LeNet,以便我们最大限度地提高我们的测试集的准确性。

LeNet架构

图2:LeNet架构由两组卷积,激活和合并层组成,后面是完全连接的层,激活,另一个完全连接,最后是一个softmax分类器(图像源)。

LeNet架构是卷积神经网络的一个很好的“第一架构”(特别是在MNIST数据集上进行了培训时,手写数字识别的图像数据集)。

LeNet很小,易于理解 - 但足够大,可以提供有趣的结果。此外,LeNet

+ MNIST的组合能够在CPU上运行,使初学者能够轻松地在深度学习和卷积神经网络中迈出第一步。

在许多方面,LeNet

+ MNIST是“Hello,World”等同于Deep

Learning的图像分类。

LeNet架构由以下层组成:

LeNet

- Convolutional Neural Network in Python

Shell

1INPUT=>CONV=>RELU=>POOL=>CONV=>RELU=>POOL=>FC=>RELU=>FC

而不是解释每层的卷积过滤器数量,过滤器本身的大小以及现在完全连接节点的数量,我将保存这个讨论,直到我们的“使用Python和Keras实现LeNet”部分博客文章,其中的源代码将作为辅助解除。

同时,我们来看看我们的项目结构 - 一个结构,我们将在以后的PyImageSearch博客文章中多次重用。

注意:原来的LeNet架构使用TANH激活功能而不是RELU。我们在这里使用RELU的原因是因为它有更好的分类精度,因为一些很好的,理想的属性(我将在未来的博客文章中讨论)。如果您在LeNet中进行任何其他讨论,您可能会看到他们使用TANH,而不是再想一想。

我们的CNN项目结构

在我们潜入任何代码之前,我们先来看看我们的项目结构:

LeNet - Convolutional Neural Network in Python

Shell

1

2

3

4

5

6

7

8

9

|---output

|---pyimagesearch

||---__init__.py

||---cnn

|||---__init__.py

|||---networks

||||---__init__.py

||||---lenet.py

|---lenet_mnist.py

为了保持代码的组织,我们将定义一个名为pyimagesearch的包。在pyimagesearch模块中,我们将创建一个cnn子模块 - 这是我们将存储卷积神经网络实现的地方,以及与CNN相关的任何帮助实用程序。

看看cnn里面,你会看到网络子模块:这是网络实现本身将被存储的地方。顾名思义,这一点。py文件将定义一个名为LeNet的类,这是我们在Python

+ Keras中实际的LeNet实现。

该lenet_mnist。py脚本将是我们的驱动程序,用于实例化LeNet网络架构,训练模型(或加载模型,如果我们的网络是预先训练的),然后评估MNIST数据集上的网络性能。

最后,输出目录将在我们的LeNet模型训练完成后存储,从而允许我们在后续调用lenet_mnist  时对数字进行分类。py,而不必重新训练网络。

过去一年,我个人一直在使用这个项目结构(或项目结构非常相似)。我发现它很有条理,易于扩展

- 随着我们用更多的网络架构和帮助功能添加到这个库中,这将在未来的博客文章中变得更加明显。

用Python和Keras实现LeNet

首先,我会假设你已经有Keras,scikit学习,和OpenCV的系统上安装(和可选,启用GPU支持)。

否则,打开礼物。py文件并插入以下代码:

LeNet

- Convolutional Neural Network in Python

Python

1

2

3

4

5

6

7

8

9

10

11

12

13# import the necessary packages

fromkeras.modelsimportSequential

fromkeras.layers.convolutionalimportConvolution2D

fromkeras.layers.convolutionalimportMaxPooling2D

fromkeras.layers.coreimportActivation

fromkeras.layers.coreimportFlatten

fromkeras.layers.coreimportDense

classLeNet:

@staticmethod

defbuild(width,height,depth,classes,weightsPath=None):

# initialize the model

model=Sequential()

第2-7行处理从keras库导入所需的函数/类。

所述LeNet类被定义在第9行,其次是构建于方法11号线。每当我定义一个新的网络架构,我总是将它放在自己的类中(主要用于命名空间和组织目的),然后创建一个静态 构建函数。

该构建方法,顾名思义,需要提供的任何参数,其在最低限度包括:输入图像的宽度。

输入图像的高度。

输入图像的深度(即通道数)。

和数量班在我们的数据集(即类标签的唯一的号码)。

我通常还包括一个可用于加载预训练模型的权值路径。给定这些参数,构建函数负责构建网络架构。

谈到构建LeNet架构时,第13行将实例化一个Sequential类,我们将用它来构建网络。

现在模型已初始化,我们可以开始添加图层:

LeNet - Convolutional Neural Network in Python

Python

15

16

17

18

19

#

first set of CONV => RELU => POOL

model.add(Convolution2D(20,5,5,border_mode="same",

input_shape=(depth,height,width)))

model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2)))

在第15-19行,我们创建了第一组CONV=>RELU=>POOL图层集。

我们的CONV层将学习20个卷积滤波器,每个滤波器的大小为5

x 5。该值的输入尺寸与输入图像的宽度,高度和深度相同(在本例中为MNIST数据集),所以我们将有28

x 28个输入,单个通道用于深度(灰度)。

然后,我们将在x和y方向上应用ReLU激活功能,然后在x和y方向上移动2

x 2的最大值池(假设一个2

x 2的滑动窗口,通过激活体积“滑动”,进行最大运算,同时在水平和垂直方向上采取2像素的步骤)。

注:本教程主要是基于代码的意思是你第一次接触到实现卷积神经网络-我会去到很多更详细的关于卷积层,激活功能,和最大集中在未来的博客帖子层。在此期间,只需试着跟随代码。

我们现在准备应用我们的第二组CONV=>RELU=>POOL层:

LeNet

- Convolutional Neural Network in Python

Python

21

22

23

24# second set of CONV => RELU => POOL

model.add(Convolution2D(50,5,5,border_mode="same"))

model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2)))

这一次,我们将学习50个卷积滤波器,而不是像上一个图层集中的20个卷积滤波器。

通常,在网络的更深层次上,观察到的CONV滤波器数量的增加。

接下来,我们来到LeNet架构的完全连接的层(通常称为“密集”层):

LeNet - Convolutional Neural Network in Python

Python

26

27

28

29

30

31

32

33

#

set of FC => RELU layers

model.add(Flatten())

model.add(Dense(500))

model.add(Activation("relu"))

#

softmax classifier

model.add(Dense(classes))

model.add(Activation("softmax"))

在第27行,我们取上一个MaxPooling2D层的输出,并将其平坦化为一个向量,使我们可以应用密集/完全连接的层。如果您有神经网络的任何先前经验,那么您将知道一个密集/完全连接的层是网络中的“标准”类型的层,其中上一层中的每个节点都连接到下一层的每个节点(因此,术语“完全连接”)。

我们的完全连接的层将包含500个单位(28行),我们通过另一个非线性ReLU激活。

第32行是非常重要的,虽然它很容易忽视

- 这一行定义了另一个Dense类,但接受一个变量(即,不是硬编码)的大小。这个大小是由类变量表示的类标签的数量。在MNIST数据集的情况下,我们有10个类(我们正在尝试学习识别的十位数中的每个一个)。

最后,我们应用一个softmax分类器(多项式逻辑回归),它将返回概率列表,一个用于10个类标签中的每一个(第33行)。具有最大概率的类标签将被选为网络的最终分类。

我们的最后一个代码块处理加载一个预先存在的weightsPath(如果这样一个文件存在)并将构造的模型返回给调用函数:

LeNet

- Convolutional Neural Network in Python

Python

35

36

37

38

39

40

41# if a weights path is supplied (inicating that the model was

# pre-trained), then load the weights

ifweightsPathisnotNone:

model.load_weights(weightsPath)

# return the constructed network architecture

returnmodel

创建LeNet驱动程序脚本

现在我们已经使用Python + Keras实现了LeNet卷积神经网络架构,现在是定义lenet_mnist的时候了。py驱动脚本将处理:加载MNIST数据集。

将MNIST分成培训和测试分组。

加载和编译LeNet架构。

培训网络

可选地将序列化的网络权重保存到磁盘,以便可以重用(而不必重新训练网络)。

显示网络输出的可视示例,以证明我们的实现确实正常工作。

打开你的lenet_mnist。py文件并插入以下代码:

LeNet - Convolutional Neural Network in Python

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

#

import the necessary packages

frompyimagesearch.cnn.networksimportLeNet

fromsklearn.cross_validationimporttrain_test_split

fromsklearnimportdatasets

fromkeras.optimizersimportSGD

fromkeras.utilsimportnp_utils

importnumpyasnp

importargparse

importcv2

#

construct the argument parse and parse the arguments

ap=argparse.ArgumentParser()

ap.add_argument("-s","--save-model",type=int,default=-1,

help="(optional)

whether or not model should be saved to disk")

ap.add_argument("-l","--load-model",type=int,default=-1,

help="(optional)

whether or not pre-trained model should be loaded")

ap.add_argument("-w","--weights",type=str,

help="(optional)

path to weights file")

args=vars(ap.parse_args())

第2-9行处理导入我们需要的Python包。注意我们如何从cnn和pyimagesearch的网络子模块导入我们的LeNet类。

注意:如果您跟随此博客文章并打算执行代码,  请使用此帖子底部的“下载”部分。为了保持这个短短的简洁,我已经省略了__init__。py更新可能会抛弃新的Python开发人员。

从那里,第12-19行解析三个可选的命令行参数,每个参数详细如下:

-保存-模型:指示器变量,用于指定在培训LeNet后是否将模型保存到磁盘。

-负载-模型:另一个指示器变量,此时间指定我们是否应该加载从磁盘预先训练的模型。

-权重:在这种情况下-保存-模型提供的-权-路径应该指向我们要保存序列化的模型。而在这情况下-负载-模型提供的-权重应该指向预先存在的权重文件我们的系统上的生活。

我们现在可以加载MNIST数据集并将其分为我们的培训和测试分裂:

LeNet

- Convolutional Neural Network in Python

Python

21

22

23

24

25

26

27

28

29

30

31

32

33# grab the MNIST dataset (if this is your first time running this

# script, the download may take a minute -- the 55MB MNIST dataset

# will be downloaded)

print("[INFO] downloading MNIST...")

dataset=datasets.fetch_mldata("MNIST Original")

# reshape the MNIST dataset from a flat list of 784-dim vectors, to

# 28 x 28 pixel images, then scale the data to the range [0, 1.0]

# and construct the training and testing splits

data=dataset.data.reshape((dataset.data.shape[0],28,28))

data=data[:,np.newaxis,:,:]

(trainData,testData,trainLabels,testLabels)=train_test_split(

data/255.0,dataset.target.astype("int"),test_size=0.33)

第25行从磁盘加载MNIST数据集。如果这是您首次使用“MNIST Original”字符串调用fetch_mldata函数,则需要下载MNIST数据集。MNIST数据集是一个55MB的文件,所以根据你的互联网连接,这个下载可能需要几秒到几分钟的时间。

在下载MNIST数据集之后,我们将数据从一组784-d特征向量(即原始像素强度)重构为28×28灰度图像,我们可以通过网络(30行)。

我们的数据矩阵现在具有形状(70000,28,28);然而,存在一个问题--Keras假定我们将为每个图像提供至少1个通道,因此我们需要在数据阵列中添加一个额外的维度(第31行)。这一行执行后,新形状数据矩阵将是:(70000,1,28,28)- ,现在适合于通过我们的LeNet架构。

最后,第32-33行执行训练和测试拆分,使用2/3的数据进行训练,剩下的1/3用于测试。我们也可以将图像从[0,255]缩小至[0,1.0],这是一种常见的缩放技术。

下一步是处理我们的标签,以便它们可以与分类交叉熵损失函数一起使用:

LeNet - Convolutional Neural Network in Python

Python

35

36

37

38

39

40

#

transform the training and testing labels into vectors in the

#

range [0, classes] -- this generates a vector for each label,

#

where the index of the label is set to `1` and all other entries

#

to `0`; in the case of MNIST, there are 10 class labels

trainLabels=np_utils.to_categorical(trainLabels,10)

testLabels=np_utils.to_categorical(testLabels,10)

39和40行处理我们的培训和测试标签(即,MNIST数据集中每个图像的“地面真相”标签)。

由于我们使用分类交叉熵损失函数,我们需要应用将整数的标签从整数转换为向量的to_categorical函数,其中每个向量范围从[0,类]。该函数为每个类标签生成一个向量,其中正确标签的索引设置为1,所有其他条目设置为0。

在MNIST数据集的情况下,我们有10个lass标签,因此每个标签现在表示为10-d向量。例如,考虑培训标签“3”。应用to_categorical函数后,我们的向量现在看起来像:

LeNet

- Convolutional Neural Network in Python

Shell

1[0,0,0,1,0,0,0,0,0,0]

注意,除了现在设置为1的第三个索引之外,向量中的所有条目都为零。

我们现在准备建立我们的LeNet架构,可选择从磁盘加载任何预先训练的权重,然后训练我们的网络:

LeNet - Convolutional Neural Network in Python

Python

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

#

initialize the optimizer and model

print("[INFO]

compiling model...")

opt=SGD(lr=0.01)

model=LeNet.build(width=28,height=28,depth=1,classes=10,

weightsPath=args["weights"]ifargs["load_model"]>0elseNone)

model.compile(loss="categorical_crossentropy",optimizer=opt,

metrics=["accuracy"])

#

only train and evaluate the model if we *are not* loading a

#

pre-existing model

ifargs["load_model"]<0:

print("[INFO]

training...")

model.fit(trainData,trainLabels,batch_size=128,nb_epoch=20,

verbose=1)

#

show the accuracy on the testing set

print("[INFO]

evaluating...")

(loss,accuracy)=model.evaluate(testData,testLabels,

batch_size=128,verbose=1)

print("[INFO]

accuracy: {:.2f}%".format(accuracy*100))

我们将使用随机梯度下降(SGD)训练我们的网络,学习率为0.01。分类交叉熵将被用作我们的损失函数,这是在使用具有两个以上类标签的数据集时相当标准的选择。然后我们的模型被编译并加载到第45-48行的内存中。

在这种情况下-负载-模型  不提供,我们要培养我们的网络(52号线)。

培训我们的网络是通过打电话来完成的。实例化模型的拟合方法(第54和55行)。我们将允许我们的网络训练20个纪元(表明我们的网络将“看到”每个训练示例共20次,以学习每个数字类的区分过滤器)。

然后我们对测试数据进行评估(59-61行),并将结果显示给我们的终端。

接下来,我们检查一下我们是否应该将网络权重序列化为文件,以便我们运行lenet_mnist。py脚本后续时间,无需从头开始重新训练网络:

LeNet

- Convolutional Neural Network in Python

Python

63

64

65

66# check to see if the model should be saved to file

ifargs["save_model"]>0:

print("[INFO] dumping weights to file...")

model.save_weights(args["weights"],overwrite=True)

我们的最后一个代码块可以从我们的测试集中随机选择几位数字,然后通过我们训练有素的LeNet网络进行分类:

LeNet - Convolutional Neural Network in Python

Python

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

#

randomly select a few testing digits

foriinnp.random.choice(np.arange(0,len(testLabels)),size=(10,)):

#

classify the digit

probs=model.predict(testData[np.newaxis,i])

prediction=probs.argmax(axis=1)

#

resize the image from a 28 x 28 image to a 96 x 96 image so we

#

can better see it

image=(testData[i][0]*255).astype("uint8")

image=cv2.merge([image]*3)

image=cv2.resize(image,(96,96),interpolation=cv2.INTER_LINEAR)

cv2.putText(image,str(prediction[0]),(5,20),

cv2.FONT_HERSHEY_SIMPLEX,0.75,(0,255,0),2)

#

show the image and prediction

print("[INFO]

Predicted: {}, Actual: {}".format(prediction[0],

np.argmax(testLabels[i])))

cv2.imshow("Digit",image)

cv2.waitKey(0)

对于每个随机选择的数字,我们使用LeNet模型(第71行)对图像进行分类。

我们网络的实际预测是通过找到具有最大概率的类标签的索引获得的。记住,我们的网络将通过softmax函数返回一组概率,每个类别标签一个,因此网络的实际“预测”是具有最大概率的类标签。

76-80行处理将28

x 28图像调整到96

x 96像素,以便我们可以更好地可视化,然后绘制图像上的预测。

最后,第82-86行将结果显示在我们的屏幕上。

用Python和Keras训练LeNet

要在MNIST数据集上训练LeNet,请确保已使用本教程底部找到的“下载”表单下载源代码。这个。zip文件包含本教程中详细介绍的所有代码 - 此外,此代码的组织方式与上面详细描述的相同的项目结构,确保在系统上正常运行(如果您的环境配置正确)。

下载后。邮政编码存档,您可以通过执行以下命令在MNIST上训练LeNet:

LeNet

- Convolutional Neural Network in Python

Shell

1$pythonlenet_mnist.py--save-model1--weightsoutput/lenet_weights.hdf5

我的机器输出结果如下:

图3:在我的Titan X上的MNIST数据集上训练LeNet每个时期需要大约3秒钟。经过20个时代,LeNet在培训数据上达到98.90%的分类精度,测试数据的精度达到98.49%。

在我的Titan X GPU上,每个纪元需要大约3秒钟,允许整个训练过程在大约60秒内完成。

只有20个时代,LeNet在MNIST数据集上达到98.49%的分类精度 -在所有计算时间只有60秒的时间里,差不多!

注意:如果执行lenet_mnist。py脚本在我们的CPU而不是GPU,期望每个时代的时间跳到70-90秒。您仍然可以在您的CPU上训练LeNet,只需要一段时间。

用Python和Keras评估LeNet

下面我列出了LeNet + MNIST实现的几个示例评估图像:

图4:应用LeNet对MNIST数据集中的数字进行分类。

在上述图像中,我们可以正确地将数字分类为“6”。

在这个图像中,LeNet正确地将数字识别为“2”:

图5:在Python和Keras中实现LeNet。

下面的图像是CNN滤波器学习的卷积滤波器的鲁棒性,区分性质的一个很好的例子:这个“6”是相当扭曲的,在数字的圆形区域之间留下了很少的差距,但LeNet仍然能够正确分类数字:

图6:使用LeNet和卷积神经网络正确分类特别难读的数字。

这是另一个图像,这次分类严重偏斜的“1”:

图7:使用卷积神经网络对偶数位进行正确分类。

最后,最后一个例子演示了分类“2”的LeNet模型:

图8:使用LeNet和Deep Learning对数字进行分类的最终示例。

Running the serialized LeNet model

After our lenet_mnist.py  script finishes executing the first time (provided you supplied both--save-model  and --weights ), you should now have a lenet_weights.hdf5  file in youroutput  directory.

Instead of re-training our network on subsequent runs of lenet_mnist.py , we can instead load these weights and use them to classify digits.

To load our pre-trained LeNet model, just execute the following command:

LeNet - Convolutional Neural Network in Python

Shell

1

$pythonlenet_mnist.py--load-model1--weightsoutput/lenet_weights.hdf5

I’ve included a GIF animation of LeNet used to correctly classify handwritten digits below:

图9:LeNet的示例动画正确分类数字。

概要

在今天的博文中,我演示了如何使用Python编程语言和Keras库实现LeNet架构,用于深入学习。

LeNet架构是一个伟大的“你好,世界”网络,让你的脚深入学习和卷积神经网络。网络本身很简单,内存占用空间小,当应用于MNIST数据集时,可以在CPU或GPU上运行,使其成为实验和学习的理想选择,尤其是在深入学习新手时。

本教程主要以代码为重点,因此,我需要跳过重要的卷积神经网络概念的详细评论,例如激活层,池层和密集/完全连接的层(否则这个帖子可能很容易被5x为长)。

在将来的博客文章中,我会详细介绍每个这些图层类型

- 同时,您只需熟悉代码并尝试自己执行。如果您感觉真的很大胆,请尝试调整每个卷积层的过滤器数量和过滤器尺寸,看看会发生什么!

无论如何,我希望你喜欢这篇博客文章 - 我一定会在将来做更深入的学习和图像分类工作。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用Python实现Lenet模型的示例代码: ``` import tensorflow as tf # 定义模型结构 def lenet(input_data): # 第一层卷积层 conv1 = tf.layers.conv2d(inputs=input_data, filters=6, kernel_size=[5, 5], padding="valid", activation=tf.nn.relu) # 第一层池化层 pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) # 第二层卷积层 conv2 = tf.layers.conv2d(inputs=pool1, filters=16, kernel_size=[5, 5], padding="valid", activation=tf.nn.relu) # 第二层池化层 pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) # 将卷积层输出的张量转化为全连接层输入的张量 flatten = tf.layers.flatten(pool2) # 第一层全连接层 fc1 = tf.layers.dense(inputs=flatten, units=120, activation=tf.nn.relu) # 第二层全连接层 fc2 = tf.layers.dense(inputs=fc1, units=84, activation=tf.nn.relu) # 输出层 output = tf.layers.dense(inputs=fc2, units=10) return output # 构建模型 input_data = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28, 1]) # 输入数据 output = lenet(input_data) # 模型输出 # 定义损失函数和优化器 label = tf.placeholder(dtype=tf.int32, shape=[None]) # 标签数据 loss = tf.losses.sparse_softmax_cross_entropy(labels=label, logits=output) # 损失函数 optimizer = tf.train.AdamOptimizer(learning_rate=0.001) # 优化器 train_op = optimizer.minimize(loss) # 训练操作 # 训练模型 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # 初始化所有变量 # 加载数据集 mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train = x_train.reshape(-1, 28, 28, 1) / 255.0 x_test = x_test.reshape(-1, 28, 28, 1) / 255.0 # 训练模型 for epoch in range(10): for i in range(x_train.shape[0] // 128): x_batch = x_train[i*128:(i+1)*128] y_batch = y_train[i*128:(i+1)*128] _, batch_loss = sess.run([train_op, loss], feed_dict={input_data: x_batch, label: y_batch}) print("Epoch {}, Batch {}, Loss: {}".format(epoch, i, batch_loss)) # 测试模型 test_loss, test_acc = sess.run([loss, accuracy], feed_dict={input_data: x_test, label: y_test}) print("Test Loss: {}, Test Accuracy: {}".format(test_loss, test_acc)) ``` 这里使用TensorFlow来实现Lenet模型,包括模型的构建、损失函数和优化器的定义,以及模型的训练和测试。在训练模型时,我们加载了MNIST数据集,并将输入数据进行了归一化处理。在测试模型时,我们计算了模型的损失值和准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值