钉钉功能介绍_高校如何借助“钉钉视频会议”功能进行远程答辩

本文详细介绍了高校如何利用钉钉的视频会议功能进行远程答辩,包括前期准备如设备与软件、答辩小组组织,答辩过程中的操作指南,以及答辩结束后的处理。远程答辩减少了地域限制和风险,实现了实时画面共享,便于互动、保存和查阅材料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c04270968bb1db2d858e13d12ea1b17c.png

编者按:因疫情防控所需和大四本科学生毕业临近,在校大学毕业生如何进行答辩,以及答辩会议的高效组织,成为摆在高校老师和同学们面前的一道难题。本文借助阿里巴巴研发的“钉钉”软件的“钉钉直播”功能,进行系统的演示和梳理,以期对无法直接参与答辩会的高校教师和学生的答辩会提供解决办法。 420af769b93a4e45ee9138cc5e55578d.png

b0fb4cc6302fa0877cada4feb1dee230.png

5572450b84b06d537cd6848fe2eca7b4.png

图1:本科毕业生“钉钉”答辩流程图

为了更加清晰的表述使用“钉钉直播”进行答辩,我们特意制作了上述流程图,结合流程图,小编简单介绍一下,进行答辩的具体步骤:

  1. 前期准备阶段:

(1)物品清单(硬软件):

主持人及教授:笔记本电脑(含耳麦与话筒,常用笔记本电脑即含有此功能),答辩背景PPT,答辩流程介绍PPT,钉钉软件下载。

参与答辩学生:笔记本电脑(含耳麦与话筒,常用笔记本电脑即含有此功能),学生答辩展示用PPT,钉钉软件下载。如果无笔记本电脑,使用手机端进行答辩,则无法提供直播过程中“屏幕分享”模式。当然,手机端纯粹的答辩还可以正常进行。

(2)组织:

所有参与答辩相关的教师及学生都需要下载钉钉软件,并加入对应的大学组织。答辩小组需要预设好主持人,完成前期的答辩小组建设和参与答辩的教授人员的添加。如下图所示:

cb6b0bf10fc45c5f40682ce4e8899329.png

图2 发起群聊,建立起答辩小组群,并按照实际用途进行命名

704ca28232eaf8aec72ac321c0f8c2b0.png

图3 钉钉直播功能按键分类介绍

在直播过程中,我们有必要对钉钉直播的按键进行系统的介绍:按照编号顺序,按键的功能如下表所示:

编号

功能

编号

功能

编号

功能

编号

功能

1

话筒开关

4

邀请进入

7

摄像开关

10

会议列表

观测

2

共享窗口

播放ppt

5

全员静音管控

8

添加成员列表

11

禁止加入行

3

会议进入退出开关

6

画面及声音录制及存储

9

主持人

列表

(3)主持人选择:

主持人需要熟悉本科生流程,熟悉软件的开启和关闭。主持人选择有3种,一个可以使本院系的辅导员或者教务管理员,第二种可以是大三在校生,辅助进行答辩的主持工作。第三种为参与答辩的教授小组的组长。

2.答辩组织阶段:

答辩组织阶段分为3步:告知教师和学生答辩分组,主持人完成本组答辩小组建构,主持人告知答辩学生在线等待。

(1)告知教师和学生答辩分组:提前通知,明确时间节点,做好设备调试。

(2)本组答辩教师构建:建立视频直播,添加参与答辩的教师,做好培训和视频形式下的信息互通和适应性练习。

 (3)添加对应学生,完成“多对一”形式的答辩安排。

(4)主持人注意“录制”,保证存档要求。

3.答辩结束:

在完成上述流程后,注意梯次性,邀请一个,答辩一个。录制完成另存后,注意编号学号信息。避免学生人员重叠和重复。

0d97de81e4bbaa65de61a65066a81eba.png

图4 钉钉直播循环示意图

上述内容,就是基于钉钉直播形式,完成的高校答辩任务的流程。

主要优点如下:

  1. 远程答辩,减少地域限制和人员流动带来的风险;

  2. 实时画面共享和可视化PPT展示,方便教师与学生之间的互动。

  3. 答辩视频材料便于保存和查阅。

  4. 保密性好,逐个进入视频答辩,方便高效。

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
内容概要:本文深入介绍了HarmonyOS文件系统及其在万物互联时代的重要性。HarmonyOS自2019年发布以来,逐步覆盖多种智能设备,构建了庞大的鸿蒙生态。文件系统作为其中的“数字管家”,不仅管理存储资源,还实现多设备间的数据协同。文章详细介绍了常见的文件系统类型,如FAT、NTFS、UFS、EXT3和ReiserFS,各自特点和适用场景。特别强调了HarmonyOS的分布式文件系统(hmdfs),它通过分布式软总线技术,打破了设备界限,实现了跨设备文件的无缝访问。此外,文章对比了HarmonyOS与Android、iOS文件系统的差异,突出了其在架构、跨设备能力和安全性方面的优势。最后,从开发者视角讲解了开发工具、关键API及注意事项,并展望了未来的技术发展趋势和对鸿蒙生态的影响。 适合人群:对操作系统底层技术感兴趣的开发者和技术爱好者,尤其是关注物联网和多设备协同的用户。 使用场景及目标:①理解HarmonyOS文件系统的工作原理及其在多设备协同中的作用;②掌握不同文件系统的特性和应用场景;③学习如何利用HarmonyOS文件系统进行应用开发,提升跨设备协同和数据安全。 阅读建议:本文内容详实,涵盖了从基础概念到高级开发技巧的多个层次,建议读者结合自身需求,重点关注感兴趣的部分,并通过实践加深理解。特别是开发者可参考提供的API示例和开发技巧,尝试构建基于HarmonyOS的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值