深度学习实验中,为了更好的评估模型性能,往往需要从原始训练数据集中取出一部分作为验证集,完全不参与模型的训练。该代码将实现从一批图像数据集文件夹中,按照比例随机取出一部分数据作为验证集数据。
下图是本例子的文件夹结构,原来train文件夹下是5个以图像类别命名的文件夹,各个子文件夹是图像样本,需要建立一个val文件夹用来存放取出的图像数据,val文件夹下的子文件夹运行代码时候会自动创建。
代码如下,使用时候就修改文件夹路径,和所需的ratio值就行。
【代码更新于-2020.6.10,解决了之前子文件夹不能自动创建的问题】
# coding=utf-8
import os, random, shutil
def moveFile(fileDir):
pathDir = os.listdir(fileDir) # 取图片的原始路径
filenumber = len(pathDir)
picknumber = int(filenumber * ratio) # 按照rate比例从文件夹中取一定数量图片
sample = random.sample(pathDir, picknumber) # 随机选取picknumber数量的样本图片
for name in sample:
shutil.move(os.path.join(fileDir, name), os.path.join(tarDir, name))
return
if __name__ == '__main__':
ori_path = 'C:\\