多元函数泰勒级数展开_函数y=3^x的几种幂级数展开

函数幂级数展开公式

设函数f(x)在 x0的某个邻域O(x0 ,r)中能展开幂级数,则它的幂级数展开就是f(x)在x0 的泰勒级数:

4502f834fd94fb60dc90ae9718eae850.png

函数y=e^x的幂级数展开

利用函数的幂级数展开公式,其中x0=0,得:

cd24518f2a1ae7ebd9148aef5931caf8.png

​函数y=3^x在x=0处的幂级数

y=3^x=e^xln3.利用y=e^x的展开公式,则:

y=3^x

=∑(-∞,+∞)(x*ln3)^n/n!,

=∑(-∞,+∞)(ln3)^n*x^n/n!。

函数y=3^x在x-1处的幂级数展开

y=3^x=3*3^x-1=3*e^(x-1)ln3,

则:y=3^x

=3*∑(-∞,+∞)[(x-1)*ln3]n/n!,

=3*∑(-∞,+∞)(ln3)^n*(x-1)^n/n!。

函数y=3^x在2x-1处的幂级数展开

y=3^x=√3*(√3)^2x-1=√3*e^(2x-1)ln√3.

则:y=3^x

=√3*∑(-∞,+∞)[(2x-1)*ln√3]^n/n!,

=√3*∑(-∞,+∞)(ln√3)^n*(2x-1)^n/n!。

函数y=3^sinx在x=0处的幂级数展开

利用y=e^x的展开公式,则:

y=3^sinx=e^ln3*sinx

=∑(-∞,+∞)(ln3*sinx)^n/n!,

=∑(-∞,+∞)(ln3)^n*(sinx)^n/n!。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值