函数幂级数展开公式
设函数f(x)在 x0的某个邻域O(x0 ,r)中能展开幂级数,则它的幂级数展开就是f(x)在x0 的泰勒级数:

函数y=e^x的幂级数展开
利用函数的幂级数展开公式,其中x0=0,得:

函数y=3^x在x=0处的幂级数
y=3^x=e^xln3.利用y=e^x的展开公式,则:
y=3^x
=∑(-∞,+∞)(x*ln3)^n/n!,
=∑(-∞,+∞)(ln3)^n*x^n/n!。
函数y=3^x在x-1处的幂级数展开
y=3^x=3*3^x-1=3*e^(x-1)ln3,
则:y=3^x
=3*∑(-∞,+∞)[(x-1)*ln3]n/n!,
=3*∑(-∞,+∞)(ln3)^n*(x-1)^n/n!。
函数y=3^x在2x-1处的幂级数展开
y=3^x=√3*(√3)^2x-1=√3*e^(2x-1)ln√3.
则:y=3^x
=√3*∑(-∞,+∞)[(2x-1)*ln√3]^n/n!,
=√3*∑(-∞,+∞)(ln√3)^n*(2x-1)^n/n!。
函数y=3^sinx在x=0处的幂级数展开
利用y=e^x的展开公式,则:
y=3^sinx=e^ln3*sinx
=∑(-∞,+∞)(ln3*sinx)^n/n!,
=∑(-∞,+∞)(ln3)^n*(sinx)^n/n!。