- 博客(8)
- 资源 (2)
- 收藏
- 关注
原创 机器学习面试题
机器学习面试题Boosting算法集成学习的框架包括Boosting、Bagging和Stacking。其中Boosting算法训练过程是阶梯状的,每个基模型在前面的基模型基础上学习,最终通过加权的方式综合到一起。Boost算法包括AdaBoost、GBDT、Xgboost、LightGBM等。CART决策树包括ID3、C4.5和CART。CART假设决策树为二叉树,内部节点取值为是和否。决策树生成时,对回归树用平方误差最小化,对分类树用基尼指数(Gini index)最小化。GBDT
2023-03-13 16:32:33
721
原创 Golang
Golang(1)一、Golang环境安装Golang下载地址IDE推荐 JetBrain GoLand设置GoPath二、Go项目目录结构三、Hello worldpackage main // 定义了包名,表示这个文件属于哪个包,每个Go程序都包含一个名为main的包import "fmt" // 导入包func main(){ fmt.Println("Hello World!")}四、Go语言变量声明变量的一般形式是使用var关键字var 变量名 变量类型 或
2021-06-05 11:41:16
1151
原创 Responsive Safety in Reinforcement Learning by PID Lagrangian Methods
Responsive Safety in Reinforcement Learning by PID Lagrangian Methods
2021-05-07 22:48:27
315
原创 推荐系统基础算法
推荐系统基础算法推荐系统基础算法分为基于内容的推荐算法和基于邻域的推荐算法,其中基于邻域的推荐算法又分为基于用户的协同过滤算法和基于物品的协同过滤算法。一、基于内容的推荐算法1. 流程(1) 特征提取:提取物品的属性特征(2) 用户偏好计算:利用一个用户的显示评分或隐式操作记录,计算用户不同特征上的偏好分数;由于用户的兴趣会随着时间的推移而变化,所以可以乘上时间系数(3) 内容召回:将待推荐物品的特征与用户偏好得分匹配,取出用户最有可能喜欢的物品池(4)物品排序:按用户偏好召回物品池,物品池可
2021-05-06 11:18:08
564
原创 Python ACM模式
ACM 模式案例参考多组输入数据,但没指定多少组while True: try: a, b = map(int, input().strip().split()) print(a+b) except EOFError: break输入一个整数告诉有多少组数据,再输入每组数据的具体值tcase = int(input().strip())for case in range(tcase): a, b = map(int, input().strip().split())
2021-03-28 17:18:15
3455
原创 python多进程PPO算法实现
多进程版本PPO实现单进程收集数据太慢,因此采用多进程收集数据。详见github请多多star,watch, fork。
2021-03-01 17:13:11
1144
原创 大麦网自动抢票工具
详情请见github地址:https://github.com/BBDrive/damai_ticket欢迎各位star,watch 和 fork。有任何问题和反馈欢迎提问。
2019-09-27 15:51:58
38071
14
《机器学习实战》中英文+源码
2019-01-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人