香农定理和奈奎斯特定理区别_泛函随记(二)Frechet-Riesz表现定理

5a63081e2a7eb003e49d6ec963d1e46b.png

开头先摘了个要的

这篇文章先后介绍几个内容

  • 正交补
  • 射影定理
  • 对偶空间(共轭空间)
  • 表现定理
  • 后续

其中,在对偶空间中,我对这个空间提出了一种理解方式:将泛函视为一种分类方式。然后列出几个比较形象的例子。借助种理解,并宏观地解释了表现定理的的用处。前面的部分主要以介绍概念为主。

其他涉及证明的部分我均放在引用框内给出,一些步骤用括号+斜体字给出说明。


先提个概念 正交补

是Hilbert空间
的线性流形,定义
并称
正交补
表示
的内积。

个人理解,内积在这里起到了一个这么样的作用,就是:像做连连看一样将‘相同’的东西提出来。这个相同取决于这个内积的定义方式(即在向量空间中,某个二元运算 满足正定性第一个变量的线性性Hermite性)。实际上就好像在玩‘连连看’一样,把相同的东西给拿出来,但是与连连看不同的地方就是,通过内积还能得到不完全一样的两个向量到底有多少一样的地方。

对于哪个正交补,就好比把连连看中的所有小方块全部分开了,分出来的

中的小方块各不‘
相同

根据内积的性质,于是乎便可以得到

的子空间,
证明
,对于
,有
,由内积定义可得
所以
。 所以为子空间。

反设
,根据正交补性质,有
,显然矛盾,所以不存在。Q.E.D.

聊聊 射影定理

接下来说个定理——射影定理

定理 设M是Hilbert空间
的子空间,则每个
都可以唯一地表成
这个
被称为
正交射影

这个定理实际上就是将向量空间上的点用相互正交的两个向量来表示。就像在证明平面几何的问题的时候,如果引入了坐标系,就可以将一个平面上的问题转化为两条直线上的问题。相似的,也可以将抽象的函数空间中的点也分割到两个具有良好性质的两个空间中。

145f1be3f506995a1d36968b01629087.png
就好比在三维空间中,将空间分割成一个平面与一个向量相互垂直的两个叫“子空间”的袋子中,其中一个袋子里随意拿一个一定是z轴上的点,另一个袋子拿到的一定是xoy上的点,两个袋子的点内积恒为零。
证明
因为
也是Hilbert空间,所以也有一个正规正交基
。任给
,最多有可数个
。设他们是
,则对
.令
上式收敛 (
这里的一些题设,设计了Hilbert空间的性质,我将会在后面的文章进行描述)。因
是闭的(
至于为什么是闭的,其实就是要说明该空间赋范完备即可。因为“闭”的含义就是指该空间任意点可被一列点所逼近,正好与完备的含义重合。),故

,则对
,有
(
这里有些地方可以稍微解释一下:第一个等号的得来是将
表示,并依靠内积第一变量的可加性得到;
第二个等号的得来是将上面的
带入;
第三个等号的得来有两个,其一因为收敛,无穷求和可以变序,其二是借助内积第一变量的线性性;第四个等号的得来是因为
都是正规正交基的其中一个,当做内积时,只有序号相同才会变1约去,不相同就直接化0消去。这里就说明了,
若刨去含在
里的可数部分的内容,那么剩下的就剩
的部分了
。下面在去说明不可数的部分。)
又当
,且
总之,
又因为
中每个元
都可以表成
,可见
,即
。因此,
中向量的表示
成立。

对于 唯一性,因为
,而且因为有
所以有
Q.E.D.

浅谈 共轭空间/对偶空间

表示Hilbert空间
上全体连续线性泛函按逐点定义的线性运算(可加性、齐次性)形成的线性空间。对
定义其范数

在证明这个问题之前,我先谈一个对于泛函的一种理解方式。先上图:

65f60a5b1055e6726fb537b243d661e6.png
图1

3ba9f814ad76f168a3792b1c33dafad2.png
图2

30d0dccadc2328edd2c8886f91768465.png
图3

这三张图分别表示某曲面(图1)-该曲面等高线(图2)-值域(图3)。这便是我想要说的:对于原先的Hilbert空间中的向量来说,就好像放入一个巨型(大到可装下任意向量)麻袋中。这个泛函呢,就相当于给了他们一种分类方式。那么这个跟图又有什么联系呢?因为对于某个特定的

,任取一可行的
,那么用
便可以划分中一系列的等价类,对于第二个数
,同上就可以划分出来一个第二个等价类......将上述过程综合起来看待,对于一个特定的值来说,就是给出了一个
评判(对于图3的某个点,在图2就是某一条曲线,也就是对应图1中的一个点集),对于一系列的指标,就相当于给出了 评判方式(将图2看做一个图3原像集合)。于是乎,
便是一堆
评判方式的集合(图2的等高线是一些列与xoy平行的平面所截得的曲线,那么
可以看成某个 朝任意平面所平行的一系列平面截曲面的登高线集合的集合)。倘若将指标固定在某个范围,那么一系列的评判方式有可能与原空间有着某种联系。这个细节就在后面讲对偶时谈一谈了~

顺理成章地,可以猜一猜,既然原像

是完备的,那么会不会
是完备的赋范线性空间。

呢?答案是 肯定的。

提前说一句,对于证明完备空间,就像把“大象搁冰箱里”的过程一样,依据定义,找Cauchy列和其特定子列,第二步,证明子列的Telescopic Series属于该空间,第三步,子列收敛于构造Series的极限,再来个绝对值不等式就OK了~

证明:任取Cauchy列
,则
。因此,便存在其子列
,且

下一步,设
考虑到
所以
有界。因为对于线性泛函来讲,有界
连续
逐点连续,所以

下面考虑子列是否能收敛到的问题。考虑

最终,
,且令
时,
,所以
。完备性得证。Q.E.D.

接下来,进入 Frechet-Riesz表现定理

定理
,则恰有一个
,使
可表为
并且
(以后范数的脚标都省略)

在进入证明环节之前,首先要明白这里说的是什么。上面说过,对偶空间可看成一个评判指标的空间,内积可以看成相似度的评判法则,于是乎,这个定理的意思就是要说:一个评判指标的评判方法可以给出一个具体的参照物进行比较,而且这个指标的好坏和被选择的参考对象的好坏一样的。

为了清楚说明这样的问题,可以带入这么一个情境中:一个老板制定了某项评审规则,那么手下的员工必有与这个规则相契合。于是乎在评审过程中,全体成员表面上是在被做评审,实则是在与那个与之契合的员工进行比较。而且,员工对这种评审制度的意见便是员工对那个被作为参考对象的员工的意见。

或者说,所谓那些评保研的机制,实际上是在将大多数学生与某个唯一特定的学生进行一一类比。任何人(主任、老师、同学、社会人士等等)对这种制度的看法实际上等同于对这个“唯一指定的学生”的看法。就像某些社会人士宣扬的反智鸡汤,说名"校毕业当保安、卖猪肉、给没学历的人打工",然后批评一番教育制度。

证明:令
,则
的子空间。

,则
即可。

,则有
。根据射影定理有
显然
.现在对任给的
,取
,则
,从而
。总之
这表明
张成整个空间。

式与
的内积,可得
从而定出
可得
于是
即为所求。

下证 唯一性。若有
,使
可见
,即

最后,证明两个范数相等。由
可见
Q.E.D

(若以一种“泛函皆指标”的眼光来看待这个证明过程,每一步就显得十分显而易见,所以我就先不多加说明了。)


后续

上面的表现定理指出:给一个

能找到唯一与之对应的
。那反过来想想,如果要是真有那么一种映射:给一个
能找到对应的
,那么这会有怎样的性质呢?

我们定义映射

这里的
是根据
表现定理
所确定的唯一元
。则
是由
上的一一对应的
保范映射。但它不是线性的,而是 共轭线性的:
因为
任意

如果在

定义内积
容易验证
为Hilbert空间(其实根据表现定理,就可以说明这个内积所引导的范数与前面使之成为Banach空间的范数是一样的,所以
对该内积完备。)

于是

是两个Hilbert空间之间的共轭同构(即
保范双射共轭线性)。如果我们对共轭同构的Hilbert不加区别,视为同一空间,可记
。Hilbert空间的这种性质称为
自共轭性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值