Riesz定理, 叶果洛夫定理, 依测度柯西列

本文详细介绍了实变函数中的Riesz定理和叶果洛夫定理,阐述了测度收敛与几乎处处收敛的概念,并通过Borel-Cantelli引理和极限存在定理证明了它们之间的关系。
摘要由CSDN通过智能技术生成

今天介绍实变函数中非常重要的两个定理, Riesz定理、叶果洛夫定理, Riesz定理说明了依测度收敛的序列一定存在一个几乎处处收敛的子列, 而叶果洛夫定理指出几乎处处收敛就是基本上一致收敛. 我们先将背景和 notation 写清楚, 随后我们需要先介绍一个概率论中非常常用的定理, 但将其写成测度论形式.


Ω \Omega Ω R k \mathbb{R}^k Rk 的子集, μ \mu μ 是勒贝格测度, ( Ω , B ( Ω ) , μ ) \left(\Omega, \mathcal{B}(\Omega),\mu\right) (Ω,B(Ω),μ) 自然组成一个测度空间. 设 f , { f n , n ≥ 1 } f, \{f_n,n\ge 1\} f,{fn,n1} 是定义在 Ω \Omega Ω 上的可测实函数.


【定义1】(依测度收敛) 若对于任意 ε > 0 \varepsilon>0 ε>0, 有 μ ( { x ∈ Ω : ∣ f n ( x ) − f ( x ) ∣ > ε } ) → 0 , n → ∞ , \mu \left( \left\{ x\in \Omega :\left| f_n\left( x \right) -f\left( x \right) \right|>\varepsilon \right\} \right) \rightarrow 0,\quad n\rightarrow \infty , μ({xΩ:fn(x)f(x)>ε})0,n, 则称 f n f_n fn 依测度 μ \mu μ 收敛于 f f f, 记作 f n → μ f f_n\xrightarrow{\mu}f fnμ f.


【定义2】(几乎处处收敛) 如果 μ ( { x ∈ Ω : lim ⁡ n → ∞ f n ( x ) ≠ f ( x ) } ) = 0 , \mu \left( \left\{ x\in \Omega :\lim_{n\rightarrow \infty} f_n\left( x \right) \ne f\left( x \right) \right\} \right) =0, μ({xΩ:nlimfn(x)=f(x)})=0, 则称 f n f_n fn 几乎处处收敛于 f f f, 记作 f n → a . e . f f_n\xrightarrow{\mathrm{a}.\mathrm{e}.}f fna.e. f.

[Remark]: 几乎处处收敛指的是: 不收敛的点组成的集合是一个零测集.


【引理3】 (Borel-Cantelli引理) 对任意 ε > 0 \varepsilon>0 ε>0, 记集合 E n = { x : ∣ f n ( x ) − f ( x ) ∣ > ε } E_n=\left\{ x:\left| f_n\left( x \right) -f\left( x \right) \right|>\varepsilon \right\} En={x:fn(x)f(x)>ε}, 如果级数 ∑ n = 1 ∞ μ ( E n ) < ∞ \sum_{n=1}^{\infty}{\mu \left( E_n \right)}<\infty n=1μ(En)<, 则有 f n → a . e . f f_n\xrightarrow{\mathrm{a}.\mathrm{e}.}f fna.e. f.

证明: 利用测度的连续性、次可加性、级数的柯西收敛准则, 有
μ ( ⋂ n = 1 ∞ ⋃ k = n ∞ { x : ∣ f k ( x ) − f ( x ) ∣ > ε } ) = lim ⁡ n → ∞ μ ( ⋃ k = n ∞ { x : ∣ f k ( x ) − f ( x ) ∣ > ε } ) ≤ lim ⁡ n → ∞ ∑ k = n ∞ μ ( { x : ∣ f k ( x ) − f ( x ) ∣ > ε } ) = 0 , \begin{aligned} \mu \left( \bigcap_{n=1}^{\infty}{\bigcup_{k=n}^{\infty}{\left\{ x:\left| f_k\left( x \right) -f\left( x \right) \right|>\varepsilon \right\}}} \right) &=\lim_{n\rightarrow \infty} \mu \left( \bigcup_{k=n}^{\infty}{\left\{ x:\left| f_k\left( x \right) -f\left( x \right) \right|>\varepsilon \right\}} \right)\\ &\le \lim_{n\rightarrow \infty} \sum_{k=n}^{\infty}{\mu \left( \left\{ x:\left| f_k\left( x \right) -f\left( x \right) \right|>\varepsilon \right\} \right)}=0,\\ \end{aligned} μ(n=1k=n{x:fk(x)f(x)>ε})=nlimμ(k=n{x:fk(x)f(x)>ε})nlimk=nμ({x:fk(x)f(x)>ε})=0,
而这对任意 ε > 0 \varepsilon>0 ε>0 成立, 故有 f n → a . e . f f_n\xrightarrow{\mathrm{a}.\mathrm{e}.}f fna.e. f.


【定理4】(Riesz定理) 如果 { f n } \{f_n\} {fn} 依测度收敛于 f f f, 则一定存在子列 { f n k , k ≥ 1 } \{f_{n_k},k\ge1\} {fnk,k1}, 使得 f n k f_{n_k} fnk 几乎处处收敛于 f f f.

证明: 依测度收敛说明了 μ ( E n ) → 0 \mu\left(E_n\right) \to0 μ(En)0, 只需考虑对于任意 k k k, 存在 n k n_k nk, 当 n ≥ n k n\ge n_k nnk 时都有 μ ( E n ) < 1 / 2 k \mu\left(E_n\right) < 1/2^k μ(En)<1/2k, 这也说明了对于子列 { f n k } \{f_{n_k}\} {fnk}, 有 ∑ k = 1 ∞ μ ( E n k ) < ∞ \sum_{k=1}^{\infty}{\mu \left( E_{n_k} \right)}<\infty k=1μ(Enk)<, 故根据引理1, 有 f n k f_{n_k} fnk 几乎处处收敛于 f f f.


下面我们介绍叶果洛夫定理, 它说明: 几乎处处收敛指的就是“基本上”一致收敛. 如我们熟知的 f n ( x ) = x n f_n(x)=x^n fn(x)=xn, x ∈ [ 0 , 1 ] x\in [0,1] x[0,1], 它很显然几乎处处收敛于 f ( x ) = 0 f(x)=0 f(x)=0, 但它并不一致收敛, 只不过如果我们去掉一个任意小的 δ \delta δ 集合, 即在 [ 0 , 1 − δ ) [0,1-\delta) [0,1δ) 上它是一致收敛的.

【定理5】(叶果洛夫定理) 设 μ ( Ω ) < ∞ \mu(\Omega)<\infty μ(Ω)<, 则下述两个命题等价: (1) { f n } \{f_n\} {fn}几乎处处收敛于几乎处处有限的 f f f; (2) 对任意 δ \delta δ, 存在一个集合 A δ A_{\delta} Aδ 满足 μ ( A δ ) < δ \mu(A_{\delta})<\delta μ(Aδ)<δ, 在 Ω − A δ \Omega- A_{\delta} ΩAδ 上有 f n ( x ) f_n(x) fn(x) 一致收敛于 f f f.

证明: (1) ⇒ \Rightarrow (2): 对于任意 δ \delta δ, 只需构造出对应的 A δ A_{\delta} Aδ 即可. 我们不妨设 f n , f f_n, f fn,f 都是有限的, 否则重令 Ω ′ = { x : ∣ f ( x ) ∣ < ∞ , ∣ f n ( x ) ∣ < ∞ , ∀ n } \Omega'=\{x:|f(x)|<\infty, |f_n(x)|<\infty, \forall n \} Ω={x:f(x)<,fn(x)<,n} 即可. 根据题设条件, 对任意 m m m, 有
0 = μ ( ⋂ n = 1 ∞ ⋃ k = n ∞ { x : ∣ f k ( x ) − f ( x ) ∣ > 1 m } ) = lim ⁡ n → ∞ μ ( ⋃ k = n ∞ { x : ∣ f k ( x ) − f ( x ) ∣ > 1 m } ) = lim ⁡ n → ∞ μ ( A n , m ) . 0=\mu \left( \bigcap_{n=1}^{\infty}{\bigcup_{k=n}^{\infty}{\left\{ x:\left| f_k\left( x \right) -f\left( x \right) \right|>\frac{1}{m} \right\}}} \right) =\lim_{n\rightarrow \infty} \mu \left( \bigcup_{k=n}^{\infty}{\left\{ x:\left| f_k\left( x \right) -f\left( x \right) \right|>\frac{1}{m} \right\}} \right) =\lim_{n\rightarrow \infty} \mu \left( A_{n,m} \right) . 0=μ(n=1k=n{x:fk(x)f(x)>m1})=nlimμ(k=n{x:fk(x)f(x)>m1})=nlimμ(An,m).
对于 δ \delta δ, m m m, 一定存在足够大的 N m N_m Nm, 使得
μ ( A N m , m ) < δ 2 m , m = 1 , 2 , ⋯   , \mu \left( A_{N_m,m} \right) <\frac{\delta}{2^m},\quad m=1,2,\cdots , μ(ANm,m)<2mδ,m=1,2,,
考虑 A δ = ⋃ m = 1 ∞ A N m A_{\delta} = \bigcup_{m=1}^{\infty} A_{N_m} Aδ=m=1ANm, 有 μ ( A δ ) < δ \mu(A_{\delta})<\delta μ(Aδ)<δ, 且
Ω − A δ = ⋂ m = 1 ∞ A N m , m c = ⋂ m = 1 ∞ ⋂ k = N m ∞ { x : ∣ f k ( x ) − f ( x ) ∣ < 1 m } , \Omega -A_{\delta}=\bigcap_{m=1}^{\infty}{A_{N_m,m}^{c}}=\bigcap_{m=1}^{\infty}{\bigcap_{k=N_m}^{\infty}{\left\{ x:\left| f_k\left( x \right) -f\left( x \right) \right|<\frac{1}{m} \right\}}}, ΩAδ=m=1ANm,mc=m=1k=Nm{x:fk(x)f(x)<m1},
满足一致收敛的条件.

(2) ⇒ \Rightarrow (1): 对 δ = 1 / m \delta = 1/m δ=1/m, 记 A m A_m Am 为不一致收敛的点集, 记 A = ⋂ m = 1 ∞ A m A= \bigcap_{m=1}^{\infty}A_m A=m=1Am, 则有 μ ( A ) = 0 \mu(A)=0 μ(A)=0 即是零测集. 且 Ω − A = ⋃ m = 1 ∞ ( Ω − A m ) \Omega -A=\bigcup_{m=1}^{\infty}{\left( \Omega -A_m \right)} ΩA=m=1(ΩAm), 因此对于任意 x ∈ Ω − A x \in \Omega-A xΩA, 存在 m m m 使得 x ∈ Ω − A m x\in \Omega - A_m xΩAm, 这说明 f n ( x ) → f ( x ) f_n(x) \to f(x) fn(x)f(x) 对任意 x ∈ Ω − A x \in \Omega-A xΩA 成立.

[Remark]: 逆命题中, m ( E ) < ∞ m(E)<\infty m(E)< 可以删去.

[Remark]: 逆命题也可以推广到依测度收敛, 即: (2) ⇒ \Rightarrow f n ( x ) f_n(x) fn(x) 依测度收敛于 f ( x ) f(x) f(x), 且同样可以删去 m ( E ) < ∞ m(E)<\infty m(E)<. 证明方法是简洁的: 对任意 ε , δ \varepsilon, \delta ε,δ, 找到对应的 A δ A_{\delta} Aδ, 在 Ω − A δ \Omega-A_{\delta} ΩAδ 上, 当 n n n 足够大时有 ∣ f n ( x ) − f ( x ) ∣ < ε |f_n(x)-f(x)|<\varepsilon fn(x)f(x)<ε, 因此有 μ ( { ∣ f n ( x ) − f ( x ) ∣ > ε } ) < μ ( A δ ) = δ \mu \left( \left\{ \left| f_n\left( x \right) -f\left( x \right) \right|>\varepsilon \right\} \right) <\mu \left( A_{\delta} \right) =\delta μ({fn(x)f(x)>ε})<μ(Aδ)=δ 因此 f n ( x ) f_n(x) fn(x) 依测度收敛于 f ( x ) f(x) f(x).


下面我们介绍依测度柯西列.

【定义6】如果 { f n } \{f_n\} {fn} 满足: 对于任意 ε \varepsilon ε, 当 n , m → ∞ n,m\to \infty n,m时, μ ( E n , m ) = μ ( { x : ∣ f n ( x ) − f m ( x ) ∣ > ε } ) → 0 , \mu \left( E_{n,m} \right) =\mu \left( \left\{ x:\left| f_n\left( x \right) -f_m\left( x \right) \right|>\varepsilon \right\} \right) \rightarrow 0, μ(En,m)=μ({x:fn(x)fm(x)>ε})0, 我们称其为依测度柯西列(基本列).

【定理7】(极限存在定理) 对于依概率柯西列, 一定存在 Ω \Omega Ω 上的几乎处处有限的函数 f f f, 使得 f n → μ f f_n\xrightarrow{\mu}f fnμ f.

证明: 通过合适选取, 可以得到数列 { n k } \{n_k\} {nk} 使得
μ ( A k ) = μ ( { x : ∣ f n k + 1 ( x ) − f n k ( x ) ∣ > 1 / 2 k } ) < 1 / 2 k , \mu \left( A_k \right) =\mu \left( \left\{ x:\left| f_{n_{k+1}}\left( x \right) -f_{n_k}\left( x \right) \right|>1/2^k\right\} \right) <1/2^k, μ(Ak)=μ({x:fnk+1(x)fnk(x)>1/2k})<1/2k,
由 Borel-Cantelli 引理, 有 μ ( A ) = μ ( ⋂ n = 1 ∞ ⋃ k = n ∞ A k ) = 0 \mu(A) = \mu \left( \bigcap_{n=1}^{\infty}{\bigcup_{k=n}^{\infty}{A_k}} \right) =0 μ(A)=μ(n=1k=nAk)=0. 在 Ω − A \Omega-A ΩA 上, 有
∑ k = m ∞ ∣ f n k + 1 ( x ) − f n k ( x ) ∣ ≤ 1 2 m − 1 , \sum_{k=m}^{\infty}{\left| f_{n_{k+1}}\left( x \right) -f_{n_k}\left( x \right) \right|}\le \frac{1}{2^{m-1}}, k=mfnk+1(x)fnk(x)2m11,
也说明函数项级数
f n 1 ( x ) + ∑ k = 1 ∞ ( f n k + 1 ( x ) − f n k ( x ) ) f_{n_1}\left( x \right) +\sum_{k=1}^{\infty}{\left( f_{n_{k+1}}\left( x \right) -f_{n_k}\left( x \right) \right)} fn1(x)+k=1(fnk+1(x)fnk(x))
是绝对收敛的, 记其极限是 f ( x ) f(x) f(x), 它在 Ω − A \Omega-A ΩA 上是有限的. 而 f n ( x ) → f ( x ) f_n(x)\to f(x) fn(x)f(x) 的一致收敛性在去掉任意一个 A k A_k Ak 后能够得到, 这满足叶果洛夫定理的条件, 因此有 f n → μ f f_n\xrightarrow{\mu}f fnμ f.

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值