自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 $L^p$ 空间: 完备性与可分性

Lp。

2023-08-26 23:38:44 1219

原创 偏度-峰度不等式

【定理1】(Pearson偏度-峰度不等式) 设。[Remark]: 这说明偏度的大小 (【定理2】(推广的偏度-峰度不等式) 设。利用柯西-施瓦茨不等式, 有。[Remark]: 如果。

2023-08-24 17:57:36 120 1

原创 Riemann-Lebesgue引理

【定理1】(Riemann-Lebesgue引理) 设。[Remark]: 这也等价于说明。[Remark]: 这实际说明。, 找具有紧支集的阶梯函数。

2023-08-24 17:16:48 418 1

原创 鲁津定理, 可测函数与连续函数, 可积函数与连续函数

上的连续函数一定可测, 反过来不一定, 但鲁津定理告诉了我们, 可测函数基本上是连续函数.即依测度收敛, 再根据 Riesz 定理取一个子列使得 a.e. 收敛成立.. 显然, 只需将不连续点用很小的一个集合去除即可, 或说: 对任意。. 再根据 Riesz定理取一个几乎处处收敛的子列即可., 根据鲁津定理的推论, 有具有紧支集的连续函数。上 a.e. 有限的可测函数, 那么对任意。上 a.e. 有限的可测函数, 则存在。上 a.e. 有限的可测函数。上 a.e. 有限的可测函数。是具有紧支集的连续函数,

2023-08-23 17:56:37 1531

原创 Riesz定理, 叶果洛夫定理, 依测度柯西列

今天介绍实变函数中非常重要的两个定理, Riesz定理、叶果洛夫定理, Riesz定理说明了依测度收敛的序列一定存在一个几乎处处收敛的子列, 而叶果洛夫定理指出几乎处处收敛就是基本上一致收敛. 我们先将背景和 notation 写清楚, 随后我们需要先介绍一个概率论中非常常用的定理, 但将其写成测度论形式.下面我们介绍叶果洛夫定理, 它说明: 几乎处处收敛指的就是“基本上”一致收敛. 如我们熟知的。[Remark]: 几乎处处收敛指的是: 不收敛的点组成的集合是一个零测集.【定理5】(叶果洛夫定理) 设。

2023-08-21 20:12:41 1641 1

原创 Frechet 导数

是 Banach 空间, 则有微积分基本定理成立. 若。是唯一的, 且称之为 Frechet 导数, 记作。阶 Frechet 可微的, 如果 (1)【定义1.1】 (Frechet可微) 设。【Remark 6】中值定理, 不一定成立.是Frechet可微的, 如果: 存在。【Remark 3】(高阶可微) 我们称。【Remark 1】等价定义是。【Remark 5】 如果。【推论】(中值不等式) 若。的开子集, 我们称映射。, 中值不等式证明完成.是赋范向量空间, 记。是连续、可微, 则有。

2023-07-14 19:25:31 1444 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除