python决策树 value_利用pandas创建决策树模型

本文深入介绍了监督学习中的决策树模型,通过一个具有2w+星的GitHub项目apachecn/AiLearning进行学习并实践。文章提供了决策树构建的伪代码及Python实现过程,包括如何计算信息增益来选取最优特征等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f427350beb7971e59ae57074a20d3343.png

今天深入学习了机器学习算法中,属于监督学习的决策树模型,我是在github上2w+星的项目学习的:apachecn/AiLearning,在此强烈推荐给新手!

作者的算法基本依靠Python的基础语法完成,比如数据集是以二维列表的形式展示的,利用基础语法对其进行操作,会比较繁琐。联想到利用pandas应该能使代码更简洁,便自己动手实操了一番:

先给出伪代码:

对于一个拥有分类结果的训练数据集:
    如果结果列只有一种分类,则返回此分类;
    如果数据集只有1列,则返回出现次数最多的分类;
    否则要选择最优特征列,创建决策树;
对于每一个特征列:
    计算每一个特征值的信息熵和概率
    计算这一特征列的期望信息熵(每一个特征值的信息熵和概率相乘后求和)
    计算特征列的信息增益(基础信息熵-期望信息熵)
    比较每一个特征的信息增益,返回最大信息增益的特征
根据最优特征划分数据集,并剔除第一次选择的最优特征
对于剩余的特征:
    递归调用函数,直到返回最终分类结果

实际代码:

#!/usr/bin/python
好的,下面是关于决策树的CART算法的Python实现示例。 首先,我们需要导入相关的库: ```python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score ``` 接下来,我们需要加载数据: ```python iris = load_iris() X = pd.DataFrame(iris.data, columns=iris.feature_names) y = pd.DataFrame(iris.target, columns=['target']) ``` 然后,我们将数据分成训练和测试: ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) ``` 接下来,我们定义一个函数来计算基尼不纯度: ```python def gini_impurity(y): _, counts = np.unique(y, return_counts=True) probabilities = counts / len(y) return 1 - np.sum(probabilities ** 2) ``` 然后,我们定义一个函数来计算基尼不纯度的加权平均值: ```python def weighted_gini_impurity(groups): total_size = sum(len(group) for group in groups) gini = 0 for group in groups: size = len(group) if size == 0: continue score = gini_impurity(group['target']) gini += score * (size / total_size) return gini ``` 接下来,我们定义一个函数来拆分数: ```python def test_split(index, value, X, y): left_mask = X.iloc[:, index] < value right_mask = X.iloc[:, index] >= value left = {'X': X[left_mask], 'y': y[left_mask]} right = {'X': X[right_mask], 'y': y[right_mask]} return left, right ``` 然后,我们定义一个函数来选择最佳的数据拆分: ```python def get_best_split(X, y): best_index, best_value, best_score, best_groups = None, None, float('inf'), None for index in range(X.shape[1]): for value in X.iloc[:, index]: groups = test_split(index, value, X, y) score = weighted_gini_impurity(list(groups.values())) if score < best_score: best_index, best_value, best_score, best_groups = index, value, score, groups return {'feature_index': best_index, 'feature_value': best_value, 'groups': best_groups} ``` 接下来,我们定义一个函数来创建一个叶节点: ```python def create_leaf_node(y): return y['target'].mode()[0] ``` 然后,我们定义一个函数来创建一个决策树: ```python def create_decision_tree(X, y, max_depth, min_size, depth): best_split = get_best_split(X, y) left, right = best_split['groups'].values() del(best_split['groups']) if not left or not right: return create_leaf_node(pd.concat([left, right], axis=0)) if depth >= max_depth: return create_leaf_node(y) if len(left) < min_size: left = create_leaf_node(left) else: left = create_decision_tree(left['X'], left['y'], max_depth, min_size, depth+1) if len(right) < min_size: right = create_leaf_node(right) else: right = create_decision_tree(right['X'], right['y'], max_depth, min_size, depth+1) return {'left': left, 'right': right, **best_split} ``` 最后,我们定义一个函数来进行预测: ```python def predict(node, row): if row[node['feature_index']] < node['feature_value']: if isinstance(node['left'], dict): return predict(node['left'], row) else: return node['left'] else: if isinstance(node['right'], dict): return predict(node['right'], row) else: return node['right'] ``` 现在我们已经定义了所有必要的函数,我们可以用以下代码来创建并测试我们的决策树模型: ```python tree = create_decision_tree(X_train, y_train, max_depth=5, min_size=10, depth=1) y_pred = np.array([predict(tree, row) for _, row in X_test.iterrows()]) print('Accuracy:', accuracy_score(y_test, y_pred)) ``` 这就是一个基于CART算法的决策树Python实现示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值