python取矩阵的一部分_Python 实现取矩阵的部分列,保存为一个新的矩阵方法

本文介绍如何在Python中取矩阵的部分列,并将其保存为一个新的矩阵。通过使用NumPy库,可以方便地完成这一操作。示例代码展示如何选取矩阵的指定列,并创建新矩阵。
摘要由CSDN通过智能技术生成

Python 实现取矩阵的部分列,保存为一个新的矩阵方法

首先输入一个矩阵:

>>> b=[[1,2,3,4,5,6],[2,2,3,4,5,6],[3,2,3,4,5,6],[4,2,3,4,5,6],[5,2,3,4,5,6]]

>>> b=np.array(b)

>>> b

array([[1, 2, 3, 4, 5, 6],

[2, 2, 3, 4, 5, 6],

[3, 2, 3, 4, 5, 6],

[4, 2, 3, 4, 5, 6],

[5, 2, 3, 4, 5, 6]])

目标:取上述矩阵的2,3,4,5,6列

>>> e=b[:,1:len(b[0])]

>>> e

array([[2, 3, 4, 5, 6],

[2, 3, 4, 5, 6],

[2, 3, 4, 5, 6],

[2, 3, 4, 5, 6],

[2, 3, 4, 5, 6]])

以上这篇Python 实现取矩阵的部分列,保存为一个新的矩阵方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

时间: 2018-11-13

python可以使用xlrd读excel,使用xlwt写excel,但是如果要把数据写入已存在的excel,需要另外一个库xlutils配合使用. 大概思路: 1.用xlrd.open_workbook打开已有的xsl文件 注意添加参数formatting_info=True,得以保存之前数据的格式 2.然后用,from xlutils.copy import copy;,之后的copy去从打开的xlrd的Book变量中,拷贝出一份,成为新的xlwt的Workbook变量 3.然后对于xlwt的

如下所示: def save(data, path): f = xlwt.Workbook() # 创建工作簿 sheet1 = f.add_sheet(u'sheet1', cell_overwrite_ok=True) # 创建sheet [h, l] = data.shape # h为行数,l为列数 for i in range(h): for j in range(l): sheet1.write(i, j, data[i, j]) f.save(path) 代码简单,但是常用! 以上这

python提供一个库 xlwt ,可以将一些数据 写入excel表格中,十分的方便.贴使用事例如下. #引入xlwt模块(提前pip下载好) import xlwt #使用workbook方法,创建一个新的工作簿 book = xlwt.Workbook(encoding='utf-8',style_compression=0) #添加一个sheet,名字为mysheet,参数overwrite就是说可不可以重复写入值,就是当单元格已经非空,你还要写入 sheet = book.add_she

此文是在django框架下编写,从数据库中获取数据使用的是django-orm 用python导出数据到excel,简单到爆!(普通的excel格式) 安装xlwt pip install xlwt 编写py文件 from xlwt import * import StringIO from apps.song.models import Song def excel_ktvsong(request):
 """
导出excel表格
"""
 _

实习期间,服务器的一位师兄让我帮忙整理一下服务器的log数据,最终我用Python实现了数据的提取并将其用Excel格式导出.下面是我Python实现的源码,可以自动遍历某一文件目录下的所有文本文件,并将总的数据导出到Excel文件中,导出为Excel格式这样就比较方便统计了. //实现将目录下所有文件格式为.txt的文件进行遍历统计,如果是别的格式直接将下面的.txt改为你所需要的格式后缀就可以了,比较方便. //过程就是先将所有的文件中的内容提取出来写入到一个新文件中,然后再从新文件中提取数

本文实例讲述了Python实现导出数据生成excel报表的方法.分享给大家供大家参考,具体如下: #_*_coding:utf-8_*_ import MySQLdb import xlwt from datetime import datetime def get_data(sql): # 创建数据库连接. conn = MySQLdb.connect(host='127.0.0.1',user='root'\ ,passwd='123456',db='test',port=3306,char

上图 代码 # -*- coding: utf-8 -*- """ Created on Sun Jun 18 20:57:34 2017 @author: Bruce Lau """ import numpy as np import pandas as pd # prepare for data data = np.arange(1,101).reshape((10,10)) data_df = pd.DataFrame(data) # ch

读取图片为矩阵 import matplotlib im = matplotlib.image.imread('0_0.jpg') 保存矩阵为图片 import numpy as np import scipy x = np.random.random((600,800,3)) scipy.misc.imsave('meelo.jpg', x) 以上这篇Python 读取图片文件为矩阵和保存矩阵为图片的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴

注意,本文代码是使用在txt文档上,同时txt文档中的内容每一行代表的是图片的名字. #coding:utf-8 import shutil readDir = "原文件绝对路经" writeDir = "写入文件的绝对路径" #txtDir = "/home/fuxueping/Desktop/1" lines_seen = set() outfile=open(writeDir,"w") f = open(readDir,

这两天在搞Theano,要把mat文件转成pickle格式载入Python. Matlab是把一维数组当做n*1的矩阵的,但Numpy里还是有vector和matrix的区别,Theano也是对二者做了区分. 直接把代码贴出来吧,好像也没什么可讲的 = = from scipy.io import loadmat import numpy, cPickle data_dict=loadmat(r'E:\dataset\CIFAR10\CIFAR10_small.mat') #need an r!

利用numpy库 (缺点:有缺失值就无法读取) 读: import numpy my_matrix = numpy.loadtxt(open("1.csv","rb"),delimiter=",",skiprows=0) 写: numpy.savetxt('2.csv', my_matrix, delimiter = ',') 可能遇到的问题: SyntaxError: (unicode error) 'unicodeescape' codec

Python读取YUV格式文件,并使用opencv显示的方法 opencv可以读取的图片类型比较多,但大多是比较常见的类型,比如".jpg"和".png",但它不能直接读取YUV格式的文件,需要通过python读取YUV文件,并进行相应的转换后,才能被opencv读取,并进行后续相应的处理. 话不多说,直接上程序. import cv2 from numpy import * import Image screenLevels = 255.0 def yuv_imp

如下所示: #coding=utf8 ''' 读取CSV文件,把csv文件放在一份list中. ''' import csv class readCSV(object): def __init__(self,path="Demo.csv"): #创建一个属性用来保存要操作CSV的文件 self.path=path try: #打开一个csv文件,并赋予读的权限 self.csvHand=open(self.path,"r") #调用csv的reader函数读取csv

这篇文章主要介绍了基于python读取.mat文件并取出信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 导入所需包 from scipy.io import loadmat 读取.mat文件 随便从下面文件里读取一个: m = loadmat('H_BETA.mat') # 读出来的 m 是一个dict(字典)数据结构 读出来的m内容: m:{'__header__': b'MATLAB 5.0 MAT-file, Platform: GL

在进行excel文件读取的时候,我自己设置了部分直接从公式获取单元格的值 但是用之前的读取方法进行读取的时候,返回值为空 import os import xlrd from xlutils.copy import copy file_path = os.path.abspath(os.path.dirname(__file__)) # 获取当前文件目录 print(file_path) root_path = os.path.dirname(file_path) # 获取文件上级目录 data

最近用编程处理文件挺多的,matlab用得比较熟,但还是想用python来写写,Fortran就不用了. 所用到的数据如下图,前面4行是说明,实际要用的数据是第5行开始. 一共是有29*53个点,每一组就有53个数据,一共是有29组. 下面就是操作了 # 导入所需的库 import numpy # 打开 micaps 文件 f1 = open('13052520.000', 'rt') f2 = open('data.txt', 'wt') # 前面4行为注释数据,没有用 for i in ra

本文实例讲述了Python实现读取TXT文件数据并存进内置数据库SQLite3的方法.分享给大家供大家参考,具体如下: 当TXT文件太大,计算机内存不够时,我们可以选择按行读取TXT文件,并将其存储进Python内置轻量级splite数据库,这样可以加快数据的读取速度,当我们需要重复读取数据时,这样的速度加快所带来的时间节省是非常可观的,比如,当我们在训练数据时,要迭代10万次,即要从文件中读取10万次,即使每次只加快0.1秒,那么也能节省几个小时的时间了. #创建数据库并把txt文件的数据存进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值