python中的numpy矩阵索引切片用法1(随手记)

NumPy 矩阵的索引切片技术非常灵活,可以让你以多种方式选择和操纵数组的部分。以下是一些常见的索引和切片技术:

  1. 基本索引

    单个元素:通过指定行和列的索引来访问单个元素,例如 matrix[row, col]。行或列:可以通过指定行号或列号来获取整行或整列,例如 matrix[row, :]matrix[:, col]
  2. 切片

    切片允许选择数组的一部分。例如,matrix[start_row:end_row, start_col:end_col]。切片支持步长,例如 matrix[start:end:step]
  3. 布尔索引

    可以使用布尔数组来索引。例如,matrix[bool_array] 会选择所有对应布尔数组中值为 True 的元素。
  4. 花式索引

    使用整数数组进行索引。例如,matrix[[row1, row2], [col1, col2]] 会选择由指定行列坐标组成的元素集合。
  5. 条件索引

    可以基于条件来选择数组的元素,例如 matrix[matrix > value]
  6. 组合索引

    可以组合使用上述索引方法,例如先进行切片,然后应用布尔索引。
  7. np.ix_ 索引

         np.ix_ 用于从多维数组中选择子矩阵。

        代码:ix_result =matrix[np.ix_([0, 2], [1, 2])](选择行 0 和 2,列 1 和 2 的子矩阵)

        结果:将是 matrix 中的 [0, 2] 行和 [1, 2] 列交叉的元素。

下面是 NumPy 矩阵索引和切片的一些具体示例:

matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

  1. 基本索引

    • 获取单个元素(第二行第三列):

      • 代码:element = matrix[1, 2]
      • 结果:6
    • 获取整行(第二行):

      • 代码:row = matrix[1, :]
      • 结果:[4, 5, 6]
    • 获取整列(第三列):

      • 代码:column = matrix[:, 2]
      • 结果:[3, 6, 9]
  2. 切片

    • 获取左上角的 2x2 子矩阵:

      • 代码:slice1 = matrix[0:2, 0:2]
      • 结果:[[1, 2], [4, 5]]
    • 每隔一行和一列选择元素:

      • 代码:slice2 = matrix[::2, ::2]
      • 结果:[[1, 3], [7, 9]]
  3. 布尔索引

    选择大于 5 的所有元素:
    • 结果:[6, 7, 8, 9]
    • 代码:bool_result = matrix[matrix > 5]
  4. 花式索引

    选择特定行列组合的元素(第 1 行第 2 列,第 3 行第 3 列):
    • 结果:[[2, 3], [8, 9]]
    • 代码:fancy_result = matrix[np.array([0, 2])[:, np.newaxis], np.array([1, 2])]
  5. 条件索引

    选择所有偶数元素:
    • 结果:[2, 4, 6, 8]
    • 代码:conditional_result = matrix[matrix % 2 == 0]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值