NumPy 矩阵的索引切片技术非常灵活,可以让你以多种方式选择和操纵数组的部分。以下是一些常见的索引和切片技术:
-
基本索引:
单个元素:通过指定行和列的索引来访问单个元素,例如matrix[row, col]
。行或列:可以通过指定行号或列号来获取整行或整列,例如matrix[row, :]
或matrix[:, col]
。 -
切片:
切片允许选择数组的一部分。例如,matrix[start_row:end_row, start_col:end_col]
。切片支持步长,例如matrix[start:end:step]
。 -
布尔索引:
可以使用布尔数组来索引。例如,matrix[bool_array]
会选择所有对应布尔数组中值为True
的元素。 -
花式索引:
使用整数数组进行索引。例如,matrix[[row1, row2], [col1, col2]]
会选择由指定行列坐标组成的元素集合。 -
条件索引:
可以基于条件来选择数组的元素,例如matrix[matrix > value]
。 -
组合索引:
可以组合使用上述索引方法,例如先进行切片,然后应用布尔索引。 -
np.ix_
索引:
np.ix_
用于从多维数组中选择子矩阵。
代码:ix_result =matrix[np.ix_([0, 2], [1, 2])]
(选择行 0 和 2,列 1 和 2 的子矩阵)
结果:将是 matrix
中的 [0, 2]
行和 [1, 2]
列交叉的元素。
下面是 NumPy 矩阵索引和切片的一些具体示例:
matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
基本索引:
获取单个元素(第二行第三列):
- 代码:
element = matrix[1, 2]
- 结果:
6
获取整行(第二行):
- 代码:
row = matrix[1, :]
- 结果:
[4, 5, 6]
获取整列(第三列):
- 代码:
column = matrix[:, 2]
- 结果:
[3, 6, 9]
切片:
获取左上角的 2x2 子矩阵:
- 代码:
slice1 = matrix[0:2, 0:2]
- 结果:
[[1, 2], [4, 5]]
每隔一行和一列选择元素:
- 代码:
slice2 = matrix[::2, ::2]
- 结果:
[[1, 3], [7, 9]]
布尔索引:
选择大于 5 的所有元素:
- 结果:
[6, 7, 8, 9]
- 代码:
bool_result = matrix[matrix > 5]
花式索引:
选择特定行列组合的元素(第 1 行第 2 列,第 3 行第 3 列):
- 结果:
[[2, 3], [8, 9]]
- 代码:
fancy_result = matrix[np.array([0, 2])[:, np.newaxis], np.array([1, 2])]
条件索引:
选择所有偶数元素:
- 结果:
[2, 4, 6, 8]
- 代码:
conditional_result = matrix[matrix % 2 == 0]