POJ 3253 Fence Repair 优先队列,思维

原题:http://poj.org/problem?id=3253
题意:给n个木条,让你用一块木板切出来,代价是两块木板的长度和。求最小代价
题解:我们发现很有意思的性质,将n个数加起来,和切出来本质上是一样的。不妨来贪心,挑选两个最小的加起来,然后将它加回原序列。可以用堆维护。

#include<cstdio>
#include<queue> 

using namespace std;
typedef long long ll;
priority_queue<ll,vector<ll>,greater<ll> > q;
int n;
int main(){
	scanf("%d",&n);
	for(int i=1,x;i<=n;i++){
		scanf("%lld",&x);
		q.push(x);
	}
	ll ans=0;
	while(q.size()>1){
	//	printf("%d",q.top());
		ll t1=q.top();q.pop();
		ll t2=q.top();q.pop();
		//q.pop();
		ans+=t1+t2;
		q.push(t1+t2); 
	} 
	printf("%lld\n",ans);
	return 0;
} 
内容概要:本文深入探讨了多种高级格兰杰因果检验方法,包括非线性格兰杰因果检验、分位数格兰杰因果检验、混频格兰杰因果检验以及频域因果检验。每种方法都有其独特之处,适用于不同类型的时间序列数据。非线性格兰杰因果检验分为非参数方法、双变量和多元检验,能够在不假设数据分布的情况下处理复杂的关系。分位数格兰杰因果检验则关注不同分位数下的因果关系,尤其适合经济数据的研究。混频格兰杰因果检验解决了不同频率数据之间的因果关系分析问题,而频域因果检验则专注于不同频率成分下的因果关系。文中还提供了具体的Python和R代码示例,帮助读者理解和应用这些方法。 适合人群:从事时间序列分析、经济学、金融学等领域研究的专业人士,尤其是对非线性因果关系感兴趣的学者和技术人员。 使用场景及目标:①研究复杂非线性时间序列数据中的因果关系;②分析不同分位数下的经济变量因果关系;③处理不同频率数据的因果关系;④识别特定频率成分下的因果关系。通过这些方法,研究人员可以获得更全面、细致的因果关系洞察。 阅读建议:由于涉及较多数学公式和编程代码,建议读者具备一定的统计学和编程基础,特别是对时间序列分析有一定了解。同时,建议结合具体案例进行实践操作,以便更好地掌握这些方法的实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值