LBP(Local Binary Pattern)目标检测的图像特征提取

LBP概念:

LBP为局部二值模式,用于描述图像局部特征的算子,其具备灰度不变性和旋转不变性。

(灰度不变性:光照变化不会对描述产生影响,因为光照产生的是区域性质的变化)

(旋转不变性:对图像进行旋转后,提取的特征不会发生变化)

LBP主要用在人脸检测和目标检测方面。

 

1、LBP特征的描述

       原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。如下图所示:

(从左上角的点开始按顺时针方向依次写)

其缺点很明显——它只覆盖了一个固定半径范围内的小区域,无法满足不同尺寸和频率纹理的需要。

由于原始LBP特征使用的是固定邻域内的灰度值,因此当图像的尺度发生变化时,LBP特征的编码将会发生错误,LBP特征将不能正确的反映像素点周围的纹理信息,因此研究人员对其进行了改进。有Extended LBP(Circular LBP)、Uniform Pattern LBP特征、MB-LBP特征(Multiscale Block LBP)。

 

2、LBP特征用于检测的原理

       显而易见的是,上述提取的LBP算子在每个像素点都可以得到一个LBP“编码”,那么,对一幅图像(记录的是每个像素点的灰度值)提取其原始的LBP算子之后,得到的原始LBP特征依然是“一幅图片”(记录的是每个像素点的LBP值)。

LBP的应用中,如纹理分类、人脸分析等,一般都不将LBP图谱作为特征向量用于分类识别,而是采用LBP特征谱的统计直方图作为特征向量用于分类识别。

       因为,从上面的分析我们可以看出,这个“特征”跟位置信息是紧密相关的。直接对两幅图片提取这种“特征”,并进行判别分析的话,会因为“位置没有对准”而产生很大的误差。后来,研究人员发现,可以将一幅图片划分为若干的子区域,对每个子区域内的每个像素点都提取LBP特征,然后,在每个子区域内建立LBP特征的统计直方图。如此一来,每个子区域,就可以用一个统计直方图来进行描述;整个图片就由若干个统计直方图组成;

        例如:一幅100*100像素大小的图片,划分为10*10=100个子区域(可以通过多种方式来划分区域),每个子区域的大小为10*10像素;在每个子区域内的每个像素点,提取其LBP特征,然后,建立统计直方图;这样,这幅图片就有10*10个子区域,也就有了10*10个统计直方图,利用这10*10个统计直方图,就可以描述这幅图片了。之后,我们利用各种相似性度量函数,就可以判断两幅图像之间的相似性了;

 

int main()
{
	src = imread("D:/poker.png");
	if (!src.data)
	{
		printf("could not load image...\n");
		return 0;
	}
	namedWindow(input_tittle,CV_WINDOW_AUTOSIZE);
	imshow(input_tittle, src);
	
	cvtColor(src, gray_src, CV_BGR2GRAY);

	Mat IBPimage = Mat::zeros(gray_src.rows-2,gray_src.cols-2,CV_8UC1);                                
	for (int row = 1; row < gray_src.rows - 1; row++)
	{ 
		for (int col = 1; col < gray_src.cols; col++)
		{
			uchar c = gray_src.at<uchar>(row, col);
			uchar code = 0;
			code |= (gray_src.at<uchar>(row-1, col-1)>c) << 7;
            //a|=b的意思就是把a和b按位或然后赋值给a 
            //按位或的意思就是先把a和b都换成2进制,然后用或操作,相当于a=a|b a!=b的意思a不等于于b;
			code |= (gray_src.at<uchar>(row-1, col)>c) << 6;
			code |= (gray_src.at<uchar>(row-1, col+1)>c) << 5;
			code |= (gray_src.at<uchar>(row, col-1)>c) << 4;
			code |= (gray_src.at<uchar>(row, col+1)>c) << 3;
			code |= (gray_src.at<uchar>(row+1, col-1)>c) << 2;
			code |= (gray_src.at<uchar>(row+1, col)>c) << 1;
			code |= (gray_src.at<uchar>(row+1, col+1)>c) << 0;
			IBPimage.at<uchar>(row - 1, col - 1) = code;
		}//以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较
	}
	namedWindow("临时",CV_WINDOW_AUTOSIZE);
	imshow("临时", IBPimage);
	waitKey(0);
	return 0;
}

 

 

 

发布了7 篇原创文章 · 获赞 0 · 访问量 118
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览