幂指函数怎么求极限_利用重要极限求值的高级奥义

ee3298a3d22afa25c9126dda6bd00767.png

本文目录

0、导言

1、预备知识

1.1 自然对数恒等式 1.2 指数乘积和幂的转化 1.3 等价无穷小 1.4 极限运算法则 1.5 洛必达法则

2、例题1

2.1 解题前分析 2.2 解法一 2.3 解法二 2.4 解题后分析

3、例题2

3.1 解法第一处分支
3.1.1 分支一
3.1.2 分支二 3.2 解法第二处分支
3.2.1 分支一
3.2.2 分支二

4、例题3

4.1 解法第一处分支
4.1.1 分支一
4.1.2 分支二 4.2 解法第二处分支
4.2.1 分支一
4.2.2 分支二

5、规律和方法总结

6、后记

导言

有一类求极限的问题,它形如

,其中
满足条件

这类问题类似于重要极限

形式。

经过进一步研究,我发现此类问题的解法往往有多种。

还记得我之前的文章《一道水题的3种解法》的例题吗?

后两种方法“谜之凑指数”和“自然对数恒等式”常常能出人意料地解决此类问题。

预备知识

1、自然对数恒等式

根据对数运算的性质,可以得到

,它被称为
对数恒等式

将上式中的

替换为自然常数
,就得到了
,它被称为
自然对数恒等式

2、指数乘积和幂的转化

根据指数的性质可得

3、等价无穷小

,有

,有

4、极限运算法则

对于连续函数,极限运算符与函数符号可以交换位置。

一般初等函数在其定义域区间内都是连续的。

5、洛必达法则

符合条件时有

条件一言难尽,在此不作叙述,请自行参考相关资料。


例题1

解题前分析

此题是类重要极限的形式,但无法将

立即替换为它的等价无穷小
,但将其形式稍作改变就可以轻易解决。

解法一

解法二

解题后分析

大概就是一道水题,两种解法都可以稳解,毫无悬念。

没啥可讲的了。

真正的干货是例题2例题3


例题2

解法第一处分支

分支一

分支二

对于中间式

,接下来的解答又可分支;

解法第二处分支

分支一

,则有

分支二

运用洛必达法则;


例题3

解法第一处分支

分支一

分支二

对于中间式

,接下来的解答又可分支;

解法第二处分支

分支一

,则有

同理,有

那么有

分支二

运用洛必达法则


规律和方法总结

解题方法

本文提到的问题都可以归纳为

,其中
满足条件

可作如下的拼凑

接着就有

或利用自然对数恒等式转换:

属于
未定式的求极限问题,若用
洛必达法则求解会更方便。

推论


后记

1、题图与本文内容无关。

2、Sochiji对函数与极限的研究告一段落。本文章会是Sochiji近期发表的有关函数与极限的最后一篇。

3、Sochiji最近在研究导数、微分、微分中值定理,接下来若发表文章则会与上述内容相关。

权利声明

1、本文章系Sochiji原创,例题来自《微积分》(赵树嫄主编,中国人民大学出版社)和《高等数学》(同济大学数学系编,高等教育出版社)。

2、本文章首次发表于知乎,允许非商业用途地规范转载,转载时请注明文章的原地址。若用于商业用途,请联系Sochiji本人和中国人民大学出版社以及高等教育出版社商讨稿酬支付事宜。

Sochiji的联系方式和其它自媒体账号:

邮箱 song_zs@qq.com

哔哩哔哩个人空间 UID35641181

洛谷博客 Sochiji 的博客

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值