python svm 拟合后predict结果_机器学习思考题目—05支持向量机(SVM)

本文深入探讨支持向量机(SVM)的基本原理,包括硬间隔和软间隔的概念,以及如何使用核方法处理非线性数据。支持向量是决定决策边界的关键,对输入数据进行缩放在SVM中至关重要。SVM分类器能够提供置信度分数,通过适当设置可输出概率。在大规模数据集上,原始形式的线性SVM优于对偶形式。针对RBF核的欠拟合问题,可通过增大γ或C来调整。最后,文章介绍了将软间隔线性SVM转化为二次规划问题的方法。
摘要由CSDN通过智能技术生成

【搬运自同人博客】

https://blog.csdn.net/qq_36810398/article/details/88298960​blog.csdn.net

本文直译自《hands on ML》课后题。(有改动的以【】表示)。

1.支持向量机的基本原理(fundamental idea)是什么?

【硬间隔】支持向量机的基本原理是在(不同的)类间找到合适的最宽的‘街道’(street)。换句话说,目标是在划分两类训练样本的决策边界之间找到最大的间隔。

【软间隔】当用软间隔(soft-margin)进行分类时,SVM在‘完美划分两类’和‘找到最宽街道’之间做一个折中(亦即少数样本会落到‘街道’上)。

【核】另外一个关键思想是当在非线性数据集上用核(kernel)。

2. 什么是支持向量(support vector)?

训练完一个SVM之后,落在‘街道’(street)及其边界上的样本称为支持向量。 决策边界完全由这些支持向量决定。不是支持向量的样本(亦即远离‘街道’的那些)对SVM没有任何影响;可以移除它们,添加更多样本或者移动它们,只要它们远离‘街道’它们就不会影响决策边界。计算预测值时只用到支持向量而非整个训练集。

3.为什么用SVM的时候,scale the input 很重要?

SVM是在不同的类中寻找最宽的合适街道,因此如果训练集没有scaled,SVM倾向于忽视小特征。如下图所示:左图为Unscaled,右图为Scaled。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值