做面板数据分位数回归模型_小白学统计|面板数据分析与Stata应用笔记(八)

本文介绍了面板门限模型在异质性分析中的应用,详细讲解了面板数据的门限回归,包括单门限和多门限模型,以及如何在Stata中使用xthreg命令进行模型估计和检验。通过实例分析,展示了面板门限模型在处理非线性和异质性问题上的优势。
摘要由CSDN通过智能技术生成

8503d6a9c0c2625ebed7b1d1ef9b65ac.png

#文章首发于公众号“如风起”。

原文链接:

小白学统计|面板数据分析与Stata应用笔记(八)​mp.weixin.qq.com
8f1897d1859ed6bd3a2c242c1e66348e.png

本期内容:面板门限模型

面板数据分析与Stata应用笔记整理自慕课上浙江大学方红生教授的面板数据分析与Stata应用课程,笔记中部分图片来自课程截图。
笔记内容还参考了陈强教授的《高级计量经济学及Stata应用(第二版)》

我们在做经验研究的时候通常遵循这样的几个步骤:

  • 首先,是分析研究我们关注的核心变量对被解释变量产生的影响(这个影响是一个平均效应);
  • 其次,是进行对估计的模型进行稳健性检验,从不同的角度来探讨这个平均效应的结果是否稳健;
  • 然后,是机制分析,探讨研究我们所关注的核心解释变量是如何影响被解释变量的;
  • 最后,是异质性分析,探讨关键的解释变量在不同的条件下可能会对被解释变量产生什么样的影响。

本篇笔记的内容面板门限模型实际上就是做异质性分析。

寻找异质性的典型的处理方法有:

  • 在模型中加入解释变量的二次项,以查看解释变量和被解释变量之间是否存在“U”型或倒“U”型的关系。
  • 交互项引入模型。
  • 对数据进行分组回归

需要注意的是,上述的对异质性处理的方法可能会存在高度共线性的问题,从而使得变量不再显著。此外,在对数据的分组上也存在一定的困难。于是,面板门限模型便成为了一种较好的异质性分析的方法。

一、门限回归

在回归分析中,我们常常关心模型系数的估计值是否稳定,即如果将整个样本分成若干个子样本(subsample)分别进行回归,是否还能够得到大致相同的估计系数。对于时间序列数据,这意味着经济结构是否随着时间的推移而改变;对于横截面数据,比如,样本中有男性与女性,则可以根据性别将样本一分为二,分别估计男性样本与女性样本。

如果用来划分样本的变量不是离散型变量而是连续变量,比如,企业规模、人均国民收入,则需要给出一个划分的标准,即“门限(门槛)值”(threshold level)。

在应用研究中,门限变量的应用是非常的广泛。经济规律可能是非线性的,其函数形式可能会依赖于某个变量(称为“门限变量”)而改变。

  • 比如,人们常常怀疑大企业与小企业的投资行为不同,那么如何区分大企业与小企业呢?
  • 另外,受到流动性约束(liquidity constraint)的企业与没有流动性约束企业的投资行为也可能不同,如何通过债务股本比(debt to equity ratio)或其他指标来区分这两类企业?
  • 再比如,发达国家与发展中国家的经济增长规律可能不同,如何通过人均国民收入这一指标来区分一个国家发达与否?

对门限模型的拟合,传统的做法是,由研究者主观(随意)地确定一个门限值,然后根据此门限值把样本一分为二(或分成更多子样本)。这种方法既不对门限值进行参数估计,也不对其显著性进行统计检验。

显然,这样得到的结果并不可靠。为此,Hansen(2000)提出“门限(门槛)回归”(threshold regression),以严格的统计推断方法对门限值进行参数估计与假设检验。

假设样本数据为

,其中
为用来划分样本的“门限变量”(threshold variable),
可以是解释变量的一部分。考虑以下门限回归模型:

(1)

其中,

为待估计的门限值,
为外生解释变量,与扰动项
不相关。上面的分段函数可以合并写为:

(2)

其中,

为示性函数,即如果括号中的表达式为真,则取值为1;反之,取值为0。显然,这是一个非线性回归,因为它无法写成参数
的线性函数。可以用非线性最小二乘法(NLS)来估计,即最小化残差平方和。

事实上&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值