最大值减最小值等于区间长度_MIT—线性代数笔记27 正定矩阵和最小值

867fc09137b5bbb21a1a257afc3b82c1.png

第27讲 正定矩阵和最小值

Positive definite matrices and minima

28 正定矩阵和最小值​v.youku.com
3fdd1967440977d6838808b62dc28698.png

本讲学习正定矩阵,这部分内容将本课程之前的知识点:主元、行列式、特征值以及方程的稳定性融为一体。本讲介绍如何判定一个矩阵是否正定矩阵,以及当一个矩阵是正定矩阵时,其内涵和矩阵操作的效果有何特别之处。此外还有正定矩阵与几何的关系:椭圆和正定有关,双曲线与正定无关。

  • 正定矩阵 Positive definite matrices

给定一个2x2矩阵

,有四个途径判定矩阵是否正定矩阵:
  1. 特征值:
  2. 行列式(所有子行列式):
  3. 主元:
  4. 表达式
    x=0除外)。通常这就是正定的定义,而前三条是用来验证正定性的条件。

给定矩阵

,从判据可知矩阵为正定阵的条件是2y-36>0,即y>18。

矩阵

正好处在判定为正定矩阵的临界点上,称之为半正定(positive semidefinite)矩阵,它具有一个特征值0,是奇异矩阵,只有一个主元,而行列式为0。半正定矩阵特征值大于等于0。

再观察

判据:

之前讨论得都是线性方程Ax,现在引入

,变成二次,如果对于任意x,y,这种二次型(quadratic form)
均大于零,则矩阵为正定矩阵。

在本例的半正定矩阵中,当x1=3,x2=-1时

如果将矩阵变为

,二次型为
,从几何图像上看没有最小值点,在原点处有一鞍点。鞍点在某个方向上看是极大值点,在另一方向上是极小值点,实际上最佳观测角度是特征向量的方向。

如果将矩阵变为

,主元为正;特征值之积为行列式的值4,特征值和为矩阵的迹22,因此特征值为正;子行列式均为正。矩阵为正定矩阵。

二次型

,其图像最小值点为原点,一阶偏导数为0,二阶偏导数为正。

189168f2305b53c124356d64771facbd.png
当年上课时候老师讲双曲面的鞍点,画的图不好,有个篮球队的哥们理解不了,于是下了课跑去问老师,老师指着他的热身篮球裤说,就你这种裤腿两侧能撕开的篮球裤,全部打开,拎起来,裤裆地方就是鞍点……算了,反正GS画图真心不行,看看Lay的吧:

fc53e62cae8b7269e4318b23287b1031.png

微积分中判定最小值点的判据:一阶导数等于零

,二阶导数为正
。线性代数中判据为二阶导数矩阵正定。

对于二次型我们可以用配方的办法来验证其是否具有最小值:

配方使得

的系数和交叉项
的系数配合形成完全平方的形式,这个时候用到的
的系数正好是18,即判定正定的临界点。如果实际的系数d大于18,则还剩余
,二次型在原点之外一定大于零,若小于18则二次型可以小于等于0。

对于

,其几何图像为碗型的曲面,如果我们用f=1的截面横截曲面,得到的就是
的椭圆曲线。而对于双曲面进行切割就得到双曲线。

配方法其实就是消元:

11e234fd01ae5befc475c8c715599a80.png

主元就是平方项系数,L矩阵中的行操作数

就是配方项内y的系数。因此这就是为什么主元为正则矩阵为正定矩阵,因为主元是每一个完全平方项的系数。本例中二次型表达式的配方说明了二维的情形,而线代的理论可以将之推广到n维。

二阶导数的矩阵记为

,矩阵对称代表交叉二阶偏导数与求导顺序无关
。在微积分中我们学到的判据
,和二阶矩阵判定正定是等价的,并且线代可以推广到n维。

3阶矩阵A=

,它是正定矩阵。计算子行列式得到

。主元是2,3/2,4/3。特征值是
这是G. Strang最爱的矩阵之一,可以用来把二阶微分方程变成离散问题,因为它每一行都是差分方程

其二次型为

这是一个四维的图像,三个维度x1,x2,x3,还有函数f,如果用f=1切割图像,则得到

。这是一个椭球体,三个特征值不同,因此椭球的三个长轴长度不同。三个轴的方向就是特征向量的方向,轴长度就是特征值,矩阵的分解
很好的说明了这件事,这就是所谓的“主轴定理”。

对于三条判据可以判定正定:
x=0除外)。已经分析了主元要大于零的原因,因为它是配方后的参数,只有都大于零才能保证正定。以下对于判据1和2做简要说明。
对称矩阵 A,其正交的特征向量可以张成整个空间,因此任意向量 x均可表示成特征向量的线性组合
,代入得
,当特征值都大于零且
x≠0时,才能保证
。因此条件1与正定性等价。

为矩阵
A左上角k阶方块,取特殊向量 x=
,即后n-k个元素为0,则有
。若矩阵
A满足正定性,则所有
均满足正定性。已证明正定性等价于特征值均为正,而矩阵行列式等于特征值之积,因此可知子行列式均大于零。反之亦成立,两命题等价。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值