线性代数Part3

25 对称矩阵和正定性

对称矩阵

如果A具有n个线性无关的特征向量,可以对角化得到
A = S Λ S − 1 A=S\Lambda S^{-1} A=SΛS1
而对于对称矩阵,
A = Q Λ Q − 1 = Q Λ Q T A=Q \Lambda Q^{-1}=Q \Lambda Q^T A=QΛQ1=QΛQT
其中Q为正交矩阵,列向量为标准正交基,这个公式显示了矩阵的对称性。

对称矩阵,特征向量正交

A p = m p , A q = n q Ap=mp,Aq=nq Ap=mp,Aq=nq,其中 A A A是实对称矩阵, m , n m,n m,n为不同的特征值, p , q p,q p,q分别为其对应的特征向量。
p T ( A q ) = p T ( n q ) = n p T q p^T(Aq)=p^T(nq)=np^Tq pT(Aq)=pT(nq)=npTq
( p T A ) q = ( p T A T ) q = ( A p ) T q = ( m p ) T q = m p T q (p^TA)q=(p^TA^T)q=(Ap)^Tq=(mp)^Tq=mp^Tq (pTA)q=(pTAT)q=(Ap)Tq=(mp)Tq=mpTq
因为: p T ( A q ) = ( p T A ) q p^T(Aq)=(p^TA)q pT(Aq)=(pTA)q m ̸ = n m \not= n m̸=n
所以: p T q = 0 p^Tq=0 pTq=0

27 正定矩阵和最小值

正定矩阵

给定一个2*2的矩阵,有四种途径判断是否是正定矩阵
1)特征值大于0
在这里插入图片描述
2)行列式(所有子行列式):
在这里插入图片描述
3)主元
在这里插入图片描述
4)表达式
在这里插入图片描述
通常这就是正定的定义,而前三条是用来验证正定性的条件。
矩阵符合正定性,其对应的图像能够取出最小值。

28 相似矩阵和诺尔当标准型

对于两个方阵 A,B , 如果存在可逆矩阵 P ,使得:
在这里插入图片描述
则称B 是 A的相似矩阵,相似矩阵具有如下的性质:

相似矩阵具有相同的特征值
如果矩阵A与对角阵相似,则对角阵中的对角线值也就是A 的 n 个特征值,这里也就是之前讲到过的对角化的知识。

29 奇异值分解

奇异值分解,简称SVD。这是矩阵最终也是最好的分解,任意矩阵可以分解为
在这里插入图片描述
正交矩阵U,对角矩阵E和正交矩阵V。
那么这样的变换怎样合到一起,首先,这个行空间能找到一组正交基(格拉姆-施密特告诉我们以任意一组基开始,经过格拉姆-施密特正交化方法就可得到),但这组正交基经过A变换后不一定能在列空间成为正交基,所以行空间中的正交基要找特殊的。考虑零空间,这些零空间体现在对角矩阵Σ中是0。
Av变换过程中,我希望转换得到的正交单位向量,所以u1,u2…是单位正交基,同时v1,v2…也是单位正交基,Av1等于u1的一个倍数,即:σu1=Av1,σ称为伸缩因子。这种转换关系写成矩阵形式就是
转化为:AV=UΣ,(对于正定矩阵,这里是AQ=QΣ)
如果A存在零空间,那么行空间是r维,零空间是n-r维,我们同样可以取一组正交基。如果基零空间的向量为vr+1,…,vn,那么Avr+1将得到零向量,得到对角阵Σ对角线下方有一些0。需要把整个Rn空间的标准正交基完善成整个Rm空间的标准正交基,在对角阵Σ中用0来完善,所以存在零空间时没问题,但行空间和列空间的基向量才是主要的。
在这里插入图片描述
在这里插入图片描述
求V
在这里插入图片描述
求U
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值