计算机的平方根的符号是哪个,平方根

[píng fāng gēn]

平方根

(数学名词)

语音

编辑

锁定

讨论

上传视频

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根(arithmetic square root)。一个正数有两个实平方根,它们互为相反数,负数没有平方根,0的平方根是0。 [1]

中文名

平方根

外文名

Square root别    名

二次方根

所属学科

数学

分    类

数学代数类

平方根公式

编辑

语音

如果一个非负数x的平方等于a,即83be8e866118ec86ba159dab979cedb9.svg894304fb75e0e167ea90cde1c04a7a4a.svg,那么这个非负数x叫做a的算术平方根。a的算术平方根记为0afbb39c463933ab765184477fc96d13.svg,读作“根号a”,a叫做被开方数(radicand)。求一个非负数a的平方根的运算叫做开平方。[1]

结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。

一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。规定:340601fedba09b30ae14b30c2c091945.svg,或13579fc3004fcfba716f9495261e3613.svg。一般地,“√ ̄”仅用来表示算术平方根,即非负数的非负平方根。

规定:0的算术平方根为0。

平方根运算

编辑

语音

平方根描述

像加减乘除一样,求平方根也有自己的竖式算法。以计算5a8021a01559b42a743783231a904930.svg 为例。过程如图1:最后求出5a8021a01559b42a743783231a904930.svg 约等于1.732(保留小数点后三位)。[2]

平方根过程1

eb1d1179ece54f39143f6339a3d2c3ec.png

图1 平方根运算因为每次补数需要补两位,所以被开方数不只一个数位时,要保证补数不能夹着小数点。例如三位数,必须单独用百位进行运算,补数时补上十位和个位的数。

平方根过程2

每一个过渡数都是由上一个过渡数变化而后,上一个过渡数的个位数乘以20,如果需要进位,则往前面进1,然后个位升十位。以此类推,而个位上补上新的运算数字。简单地讲,过渡数27,是第一次商的1乘以20,把个位上的0用第二次商的7来换,过渡数343是前两次商的17乘以20=340,其中个位0用第三次商的3来换,第三个过渡数3462是前三次商173乘以20=3460,把个位0用第四次的商2来换,依次类推。

平方根过程3

误差值的作用。如果要求精确到更高的小数数位,可以按规则,对误差值继续进行运算。

平方根例子

计算√10

3. 1 6 2 2 7--------

-----------------------------

√10’00’00’00’00’--------

3| 9 3 第1位3

-------

6 1|100 2*3*10+1 =61 第2位1

| 61

-------

626 | 3900 2*31*10+6 =626 第3位6

| 3756

--------

6322|14400 2*316*10+2 =6322 第4位2

|12644

---------

63242|175600

|126484

-----------

632447|4911600

|4427129

---------

××××××00(如此循环下去)

所以,√10=3.16227…

再如√7

= 2. 6 4 5 …

---------------------

2 | 7

4

--------------

4 6 |300

276

--------------------

52 4 | 2400

2096

-----------------------------

528 5 | 30400

26425

-------------------------------

5290?| 3 9 75 00

平方根牛顿迭代法

编辑

语音

上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了。我们可以采取下面办法:

比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。

我们先计算0.5(350+136161/350),结果为369.5。

然后我们再计算0.5(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且369²末尾数字为1。我们有理由断定369²=136161。

一般来说,能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算6ae751ab62732e897b67068478c99dab.svg 。首先我们发现600²<469225<700²,我们可以挑选650作为第一次计算的数。即算0.5(650+469225/650)得到685.9。而685附近只有685²末尾数字是5,因此685²=469225。从而d970db954868475c104ffd97b40504b3.svg

对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。

实际中这种算法也是计算机用于开方的算法。

用Ruby求平方根

(注:sqrt = square root平方根)module MyMath

def sqrt(num,rx=1,e=1e-10) #参数1,需要求平方根的目标;参数2,迭代区间;参数3,精度

num*=1.0 #目标初始化

(num-rx*rx).abs 

end

end

include MyMath

puts sqrt(2) #求2的平方根

puts sqrt(2,5,0.01) #求2的平方根+迭代区间与精度。

C语言版求平方根double Sqrt(double a,double p)//a是被开平方根数,p是所求精度

{

double x=1.0;double cheak;

do

{

x = (a / x + x) / 2.0;

cheak = x * x - a;

} while((cheak >= 0 ? cheak : -cheak) > p);

return x;

}

int main()

{

printf("%.4f\n",Sqrt(2.0,0.0001));

printf("%.4f\n",Sqrt(0.09,0.0001));

return 0;

}

输出结果:

1.4142

0.3000

平方根知识教案

编辑

语音

算术平方根定义:

如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根,记作f8bc180e69f3384775fcd0052859db5c.svg 。其中,a叫做被开方数。例如:因为2和-2的平方都是4,且只有2是正数,所以2就是4的算术平方根。

由于正数的平方根互为相反数,因此正数的平方根可分别记作0afbb39c463933ab765184477fc96d13.svg51342cdee06bd269323db9ded9bccbb4.svg ,可合写为39fb144a00a25bf3fb1f21b8da45aa90.svg 。例如5的平方根可以分别记作06e8efdfeae96cd8bf3b89f28dcdc949.svg2c148628c15707ceaadf59c3b3079c7a.svg ,可合写为520d04af76e67d4d370eab1dea401573.svg

0的平方根仅有一个,就是0本身。而0本身也是非负数,因此0也是0的算术平方根。可记作226e1ed61eff85828b226e2c93516003.svg

注意:算术平方根只有一个!

教学重点与难点分析

1.本节重点是平方根和算术平方根的概念。平方根是开方运算的基础,是引入无理数的准备知识。平方根概念的正确理解有助于符号表示的理解,是正确求平方根运算的前提,并且直接影响到二次根式的学习。算术根的

2.本节难点是平方根与算术平方根的区别与联系。首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同。

3.本节主要内容是平方根和算术平方根,注意数字要简单,关键让学生理解概念。另外在文字叙述时注意语言的严谨规范。

求平方根教学重点难点

1.教学重点是用计算器求一个正数的平方根的程序,无论实际生活,还是其他学科都会经常用到计算器求一个数的平方根,这也是学生的基本技能之一。

2.教学难点准确用计算器求一个正数的平方根,由于开平方运算要用到第二功能键,学生容易漏掉此步操作,在教学过程中要着重说明此键的作用功能教法建议。

3.在给学生讲解如何利用计算器求一个数的平方根时,应掌握方法。

词条图册

更多图册

参考资料

1.

人民教育出版社课本教材研究所.初二八年级上册数学课本:人民教育出版社,2017

2.

平方根

.中考网[引用日期2017-09-06]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Cordic 是一种常见的数值计算方法,广泛应用于各种数学算法例如三角函数、指数函数和对数函数等。在Cordic中计算平方根时,通常使用以下步骤: 第一步,将待求平方根的数与1进行比较,如果它小于1,则将其平方并乘以2,直到数值大于1,此时记录下相应的指数(即对数)。 第二步,使用Cordic算法计算一个近似的平方根,此近似值可以通过迭代计算不断的精确化。 第三步,将迭代计算后的近似值乘以2的指数次方,即可得到所求平方根。 Cordic计算平方根的优点在于,它具有很高的精度和少量的计算量,可以在各种硬件平台上实现。同时,Cordic算法对于复杂的运算具有很强的稳定性和鲁棒性,可以在保持精度和减少舍入误差方面提供很好的支持。 综上所述,Cordic算法在数值计算中具有重要的地位,计算平方根是其中的一个典型示例。通过它的优良特性,我们可以实现高效、准确的数据处理和计算。 ### 回答2: CORDIC是一种通过迭代计算来实现各种数学函数的数字算法。其中包括计算平方根。CORDIC的方法是通过利用一系列旋转和缩放操作将复杂的数学问题转化为简单的加减和移位操作,从而显著降低计算复杂度。 CORDIC计算平方根的基本思想是将平方根问题转换为旋转问题。具体而言,给定一个数x,首先将其转化为二进制小数形式。然后,通过迭代旋转操作,不断逼近目标值√x。每次旋转操作中,需要判断旋转角度的大小和符号,并根据旋转的方向来调整当前近似值。 CORDIC的平方根计算算法有很多优点,包括高精度、高效率、易于实现等。它特别适用于硬件实现,因为它只需要非常简单的基本运算,不需要乘法或除法。这使得它成为一个重要的计算机算法,可以广泛应用于各种领域,包括数字信号处理、图形图像处理、机器学习等。 总之,CORDIC是一种非常有用的方法,可以通过旋转和缩放操作来实现各种数学函数,包括计算平方根。它具有高精度、高效率和易于实现等优点,适用于硬件实现和软件实现。 ### 回答3: Cordic是一种旋转向量算法,可以用于计算许多数学函数,如三角函数、指数函数和对数函数等。在这些数学函数中,平方根也是一个重要的函数,同时Cordic也可以用于计算平方根。 Cordic算法的基本思想是将计算某个数学函数的问题转化为从给定角度的旋转向量表示的问题。对于求平方根,可以将其转化为计算一个旋转向量的模长。具体来说,可以将需要求的数表示成一个极坐标系下的向量,其中角度为45°,那么其模长即为所需的平方根。这个向量可以沿着45°旋转至接近实际的向量,在每次旋转过程中可以通过不断加减一个既定的值的方式来逐步减小向量的模长,直到模长足够接近实际平方根。 Cordic算法具有高效、精确和易于实现等优点,可以在很多嵌入式系统中得到广泛的应用。当然,其也有一些限制。例如在求解过程中,需要通过连续的旋转来逼近实际值,如果旋转量不够大或者旋转次数不够多,有可能无法得到足够精确的结果。此外,对于某些数学函数,Cordic算法可能并不是最好的选择,需要根据具体情况来选择合适的算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值