很多小伙伴都和我抱怨(其实我自己也是)服务器上管理员已安装好显卡驱动或已安装的CUDA版本无法满足自己要求(要么太高要么太低),与自己需要的TensorFlow或者Pytorch版本不兼容,急的头皮发麻!!!今天熬夜写博客带大家一起来安装属于自己的CUDA与cuDNN!
一、前期准备工作
1.1 输入nvidia-smi
查看自己的显卡驱动版本以及支持的最大CUDA版本:
确认不是自己需要的版本。
然后进入英伟达提供的GPU驱动和CUDA对应关系,
确认自己目前的GPU驱动是否符合自己要安装的CUDA版本,符合就进入下一步,不符合就安装更加高级的驱动。
1.2 输入uname -a与cat /proc/version查看系统的信息,方便匹配对应的CUDA:
可以看到我们的系统是Linux,Ubuntu的内核,64位(x86_64)的系统。
Ubuntu版本号为18.04。
1.3 安装包下载:
1.3.1 下载CUDA:
进入英伟达CUDA下载页面,
点击Download Now,可以看到。目前最新的版本是11.0,
我们以下载10.2为例,点击右下角的Legacy Releases,寻找10.2版本,
进入10.2下载页面之后,依据之前的系统信息,选择合适系统的CUDA,
点击runfile(local),弹出下载命令:
此时你可以选择在服务器上输入
wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
在服务器上进行下载,也可以选择在浏览器中输入wget后面的网址,然后在本地进行下载再上传至服务器。
1.3.2 cuDNN下载
通过网址下载CUDNN,这个下载需要注册账号(简单几步注册登录即可),登录以后,如下图选择合适的CUDA版本对应的CUDNN并选择CUDNN Library for Linux,开始下载,下载好以后将文件后缀名改为.tgz后上传至服务器。
二、 开始安装CUDA和cuDNN
现在在我们的服务器中已经有了CUDA和cuDNN的安装包了
2.1 安装CUDA
- 给cuda可执行权限
chmod +x cuda_10.2.89_440.33.01_linux.run
2. 运行run文件
sh cuda_10.2.89_440.33.01_linux.run
3. 通过键盘方向键(↑,↓)和Enter键可以进行选择和进入(确定)。选择Continue并进入
4. 输入accept进入
5. 利用上下键与Enter勾选对话框,只安装CUDA Toolkit。
6. 选择Options并进入,然后我们需要修改Toolkit Options 、Library install path这两项的路径。
7. 修改Toolkit Options路径,选择Change Toolkit Install Path
8. 将默认路径修改至个人目录下,点击Enter确认
9. 将下面的选项取消选定,选择Done,确认退出
10. 选择Library install path (Blank for system default)
11. 添加之前一样的路径并Enter确认退出
12. 选择Done返回上一层目录,修改路径完成,选择Install开始安装
13. 出现如下所示的安装信息则说明安装成功
2.2 修改环境变量
- 输入vim ~/.bashrc进行环境变量的修改;
- 添加一下信息(每个人的路径是不同的,我的是/home/zhaoqc/cuda-10.2)并保存退出。
export CUDA_HOME=$CUDA_HOME:/home/zhaoqc/cuda-10.2
export PATH=$PATH:/home/zhaoqc/cuda-10.2/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/zhaoqc/cuda-10.2/lib64
3. 输入source ~/.bashrc
2.3 安装 cuDNN
- 解压cuDNN,输入以下命令进行解压
tar -zxvf cudnn-10.2-linux-x64-v8.0.0.39.tgz
2. 此时当前目录下回出现一个./cuda的文件夹
3. 复制文件到CUDA安装目录
cp cuda/include/cudnn.h ../cuda-10.2/include/
cp cuda/lib64/libcudnn* ../cuda-10.2/lib64/
4. 修改权限,cudnn安装完成
chmod a+r ../cuda-10.2/include/cudnn.h ../cuda-10.2/lib64/libcudnn*
2.4 查看是否安装成功,输入nvcc -V,如果你也安装成功了,请各位大侠帮忙点赞收藏吧
参考
- Linux安装CUDA的正确姿势
- Linux系统CUDA10.2+CUDNN安装教程
- 非root用户安装cuda、cudnn(for tensorflow==2.1.0,CUDA 10.1,cuDNN 7.6.5)
- 无root Linux安装CUDA 10.2 及 cudnn