python用scrapy爬虫豆瓣_爬虫教程——用Scrapy爬取豆瓣TOP250

最好的学习方式就是输入之后再输出,分享一个自己学习scrapy框架的小案例,方便快速的掌握使用scrapy的基本方法。

本想从零开始写一个用Scrapy爬取教程,但是官方已经有了样例,所以还是不写了,尽量分享在网上不太容易找到的东西。自己近期在封闭培训,更文像蜗牛一样,抱歉。

Scrapy简介

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。

其最初是为了 页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。

如果此前对scrapy没有了解,请先查看下面的官方教程链接。

架构概览:https://docs.pythontab.com/scrapy/scrapy0.24/topics/architecture.html

Scrapy入门教程:https://docs.pythontab.com/scrapy/scrapy0.24/intro/tutorial.html

爬虫教程

首先,我们看一下豆瓣TOP250页面,发现可以从中提取电影名称、排名、评分、评论人数、导演、年份、地区、类型、电影描述。

Item对象是种简单的容器,保存了爬取到得数据。其提供了类似于词典的API以及用于声明可用字段的简单语法。所以可以声明Item为如下形式。class DoubanItem(scrapy.Item):

# 排名

ranking = scrapy.Field()

# 电影名称

title = scrapy.Field()

# 评分

score = scrapy.Field()

# 评论人数

pople_num = scrapy.Field()

# 导演

director = scrapy.Field()

# 年份

year = scrapy.Field()

# 地区

area = scrapy.Field()

# 类型

clazz = scrapy.Field()

# 电影描述

decsription = scrapy.Field()

我们抓取到相应的网页后,需要从网页中提取自己需要的信息,可以使用xpath语法,我使用的是BeautifulSoup网页解析器,经过BeautifulSoup解析的网页,可以直接使用选择器筛选需要的信息。有一些说明写到代码注释里面去了,就不再赘述。

Chrome 也可以直接复制选择器或者XPath,如下图所示。class douban_spider(Spider):

count = 1

# 爬虫启动命令

name = 'douban'

# 头部信息,伪装自己不是爬虫程序

headers = {

'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36',

}

# 爬虫启动链接

def start_requests(self):

url = 'https://movie.douban.com/top250'

yield Request(url, headers=self.headers)

# 处理爬取的数据

def parse(self, response):

print('第', self.count, '页')

self.count += 1

item = DoubanItem()

soup = BeautifulSoup(response.text, 'html.parser')

# 选出电影列表

movies = soup.select('#content div div.article ol li')

for movie in movies:

item['title'] = movie.select('.title')[0].text

item['ranking'] = movie.select('em')[0].text

item['score'] = movie.select('.rating_num')[0].text

item['pople_num'] = movie.select('.star span')[3].text

# 包含导演、年份、地区、类别

info = movie.select('.bd p')[0].text

director = info.strip().split('\n')[0].split('   ')

yac = info.strip().split('\n')[1].strip().split(' / ')

item['director'] = director[0].split(': ')[1]

item['year'] = yac[0]

item['area'] = yac[1]

item['clazz'] = yac[2]

# 电影描述有为空的,所以需要判断

if len(movie.select('.inq')) is not 0:

item['decsription'] = movie.select('.inq')[0].text

else:

item['decsription'] = 'None'

yield item

# 下一页:

# 1,可以在页面中找到下一页的地址

# 2,自己根据url规律构造地址,这里使用的是第二种方法

next_url = soup.select('.paginator .next a')[0]['href']

if next_url:

next_url = 'https://movie.douban.com/top250' + next_url

yield Request(next_url, headers=self.headers)

然后在项目文件夹内打开cmd命令,运行scrapy crawl douban -o movies.csv就会发现提取的信息就写入指定文件了,下面是爬取的结果,效果很理想。

原文链接:https://mp.weixin.qq.com/s/eRDNn1uE-z-Oq-782kd-Dw

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>