mysql 三角函数_三角函数公式

本文详细介绍了MySQL中的三角函数,包括正弦、余弦、正切等的基本概念、图形表示、函数关系以及诱导公式。还提供了常用角度的三角函数值,并探讨了如何运用诱导公式简化和求解三角函数问题。同时,提到了三角函数在解决数学问题和实际应用中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义式

锐角三角函数任意角三角函数

图形

7af40ad162d9f2d34d021b03abec8a136227ccce.jpg直角三角形

8d5494eef01f3a2913d7b8ba9925bc315c607ca2.jpg任意角三角函数

正弦(sin)

35a85edf8db1cb13fe6defbddf54564e92584b1c.jpg

b17eca8065380cd7e44766b9a244ad345982810d.jpg

余弦(cos)

730e0cf3d7ca7bcb4599027bbd096b63f724a880.jpg

908fa0ec08fa513d1b84a88a3e6d55fbb2fbd9bc.jpg

正切(tan或tg)

d52a2834349b033b36892f7417ce36d3d539bd1f.jpg

060828381f30e9249f8858654f086e061d95f7b2.jpg

余切(cot或ctg)

060828381f30e9248bff4f9f4e086e061c95f7c1.jpg

50da81cb39dbb6fd062f52690c24ab18972b370c.jpg

正割(sec)

4a36acaf2edda3cc8eb60c6f04e93901213f922b.jpg

ae51f3deb48f8c540b99017b39292df5e0fe7f18.jpg

余割(csc)

dc54564e9258d1090e737a1cd358ccbf6d814d88.jpg

bba1cd11728b47106a6b3998c0cec3fdfc03231a.jpg

表格参考资料来源:现代汉语词典[1]  .

函数关系

倒数关系:①

80cb39dbb6fd52662600edbaa918972bd4073671.jpg ;② 

00e93901213fb80ef27ba46533d12f2eb83894de.jpg ;③ 

3ac79f3df8dcd10074603d93778b4710b8122f80.jpg

商数关系:①

e850352ac65c103828851f6cb0119313b17e89a1.jpg ;② 

f3d3572c11dfa9ecc84086b960d0f703918fc136.jpg .

平方关系:①

9345d688d43f87944e4f9980d01b0ef41ad53ae8.jpg ;② 

8601a18b87d6277fb122e2962a381f30e924fc68.jpg ;③ 

d6ca7bcb0a46f21fe0ca8ffdf4246b600d33aea6.jpg .

常用角度三角函数

sin30°=1/2            sin45°=√2/2       sin60°=√3/2

cos30°=√3/2         cos45°=√2/2        cos60°=1/2

tan30°=√3/3           tan45°=1           tan60°=√3

cot30°=√3              cot45°=1           cot60°=√3/3

sin15°=(√6-√2)/4    sin75°=(√6+√2)/4     cos15°=(√6+√2)/4

cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出)

sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)  正

诱导公式

公式一:

91529822720e0cf3442cd3480f46f21fbf09aaae.jpg 为任意角,终边相同的角的同一三角函数的值相等:

faedab64034f78f0aec43d3972310a55b2191c28.jpg

公式二:

32fa828ba61ea8d3f900e8b7920a304e251f5866.jpg 为任意角, 

9f510fb30f2442a7e3176116d443ad4bd1130263.jpg 与 

c9fcc3cec3fdfc038c737f0bd13f8794a4c2267d.jpg 的三角函数值之间的关系:

43a7d933c895d1430f65968d71f082025aaf0708.jpg

公式三:

任意角

caef76094b36acafe6980a4f79d98d1001e99c0d.jpg 与 

4afbfbedab64034f3f7f5eb5aac379310b551dd6.jpg 的三角函数值之间的关系:

8601a18b87d6277f532040962a381f30e924fc6a.jpg

公式四:

4afbfbedab64034f3fbd5eb5aac379310a551d14.jpg 与 

5366d0160924ab18a6507d8430fae6cd7b890b3a.jpg 的三角函数值之间的关系:

b17eca8065380cd7b19ed043a344ad345882819f.jpg

公式五:

e824b899a9014c081eceb4160f7b02087af4f488.jpg 与 

9358d109b3de9c822954663c6981800a19d84354.jpg 的三角函数值之间的关系:

5d6034a85edf8db1b9a56f6d0f23dd54564e742b.jpg

公式六:

bd315c6034a85edf638a61904c540923dd54757b.jpg 及 

242dd42a2834349ba720f036ccea15ce36d3be5b.jpg 与 

86d6277f9e2f0708400db4b3ec24b899a901f27d.jpg 的三角函数值之间的关系:

9922720e0cf3d7cae938a37ef41fbe096a63a9e8.jpg

记背诀窍:奇变偶不变,符号看象限[2]  .即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。

诱导公式口诀“奇变偶不变,符号看象限”意义:

k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;

(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

记忆方法一:奇变偶不变,符号看象限:

f31fbe096b63f624e0f4b9658044ebf81a4ca32f.jpg

记忆方法二:无论α是多大的角,都将α看成锐角.

以诱导公式二为例:

78310a55b319ebc4f799f6ff8526cffc1f1716f6.jpg

若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二.

以诱导公式四为例:

50da81cb39dbb6fd4db965400e24ab18962b37f1.jpg

若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.

诱导公式的应用:

运用诱导公式转化三角函数的一般步骤:

fc1f4134970a304edc1a239cd6c8a786c9175c98.jpg

特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

基本公式

和差角公式

二角和差公式

71cf3bc79f3df8dcc0941decc711728b47102825.jpg

faf2b2119313b07e7f22c27506d7912397dd8c34.jpg

证明如图:负号的情况只需要用-β代替β即可.cot(α+β)推导只需把角α对边设为1,过程与tan(α+β)相同.

55e736d12f2eb93868d5c2edd6628535e5dd6f71.jpg证明正切的和差角公式

7acb0a46f21fbe09ded77b0b68600c338744ad20.jpg证明正弦、余弦的和差角公式

三角和公式

c8ea15ce36d3d5391e4c92be3087e950352ab05e.jpg

和差化积公式

8c1001e93901213f7271d2a15ee736d12f2e9509.jpg

口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.

积化和差公式

1f178a82b9014a90d4a193f1ab773912b21beedb.jpg

574e9258d109b3de55ca0da6cdbf6c81810a4c83.jpg

63d9f2d3572c11dfe3d957ed622762d0f603c2f0.jpg

d50735fae6cd7b897497fc78082442a7d8330e56.jpg

倍角公式

二倍角公式

1e30e924b899a901277bc64b17950a7b0208f505.jpg

三倍角公式

377adab44aed2e73e34411248101a18b87d6fa0d.jpg

b999a9014c086e066a73a84304087bf40bd1cbdb.jpg

ac345982b2b7d0a2ca2e9595cdef76094a369ad7.jpg

09fa513d269759eeb734f6c3b4fb43166d22df56.jpg

58ee3d6d55fbb2fbcea4ce1a494a20a44623dc2f.jpg

证明:

sin3a

=sin(a+2a)

=sin^2a·cosa+cos^2a·sina

=2sina(1-sin^2a)+(1-2sin^2a)sina

=3sina-4sin^3a

cos3a

=cos(2a+a)

=cos^2acosa-sin^2asina

=(2cos^2a-1)cosa-2(1-cos^2a)cosa

=4cos^3a-3cosa

sin3a

=3sina-4sin^3a

=4sina(3/4-sin^2a)

=4sina[(√3/2)-sina][(√3/2)+sina]

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[60°+a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a

=4cos^3a-3cosa

=4cosa(cos^2a-3/4)

=4cosa[cos^2a-(√3/2)^2]

=4cosa(cosa-cos30°)(cosa+cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述两式相比可得:

tan3a=tana·tan(60°-a)·tan(60°+a)

四倍角公式

sin4a=-4*[cosa*sina*(2*sin^2a-1)]

cos4a=1+(-8*cos^2a+8*cos^4a)

tan4a=(4*tana-4*tan^3a)/(1-6*tan^2a+tan^4a)

五倍角公式

aa64034f78f0f736e7ecd0b90c55b319ebc41373.jpg

cdbf6c81800a19d8417818bd35fa828ba61e460b.jpg

d52a2834349b033bfedb636213ce36d3d539bd33.jpg

n倍角公式

应用欧拉公式:

4e4a20a4462309f7178037aa740e0cf3d6cad69f.jpg .

上式用于求n倍角的三角函数时,可变形为:

6a63f6246b600c33130840b5104c510fd9f9a15e.jpg

所以

6f061d950a7b02081d85bc5964d9f2d3572cc83e.jpg

其中,Re表示取实数部分,Im表示取虚数部分.而

ac4bd11373f0820260df0f4241fbfbedab641b79.jpg

所以

8d5494eef01f3a29eaa429769f25bc315c607c1e.jpgn倍角的三角函数

半角公式

37d12f2eb9389b50879f63eb8335e5dde7116e23.jpg

(正负由

2fdda3cc7cd98d1017f95b1c233fb80e7bec90e9.jpg 所在的象限决定)

万能公式

43a7d933c895d143837e669a75f082025aaf077a.jpg

辅助角公式

f9dcd100baa1cd117c9cf580bc12c8fcc3ce2d63.jpg

证明:

由于

6159252dd42a283445e0de9a5eb5c9ea14cebfd9.jpg ,显然 

96dda144ad34598239080e0309f431adcaef84a5.jpg ,且

6609c93d70cf3bc7949a5391db00baa1cd112a30.jpg

故有:

2f738bd4b31c8701fe6d2d9b2d7f9e2f0608fff0.jpg

其他公式

正弦定理

详见词条:正弦定理

在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R.则有[3]  :

03087bf40ad162d90b3c711517dfa9ec8b13cded.jpg

正弦定理变形可得:

0d338744ebf81a4ccd117fb4dd2a6059252da6a8.jpg

余弦定理

详见词条:余弦定理

8ad4b31c8701a18b715f3b239c2f07082838fe22.jpg余弦定理

对于如图所示的边长为a、b、c而相应角为α、β、γ的△ABC,有:

6f061d950a7b02080f12ae9c68d9f2d3562cc8f0.jpg

也可表示为:

10dfa9ec8a13632719a4514e9b8fa0ec08fac706.jpg

降幂公式

sin²α=[1-cos(2α)]/2

cos²α=[1+cos(2α)]/2

tan²α=[1-cos(2α)]/[1+cos(2α)]

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数。

泰勒展开式

泰勒展开式又叫幂级数展开法

f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+…

实用幂级数:

ex= 1+x+x2/2!+x3/3!+…+xn/n!+…,x∈R

ln(1+x)=x-x2/2+x3/3-…+(-1)k-1xk/k, x∈(-1,1)

sin x = x-x3/3!+x5/5!-…+(-1)k-1x2k-1/(2k-1)!+…, x∈R

cos x = 1-x2/2!+x4/4!-…+(-1)kx2k/(2k)!+…, x∈R

arcsin x = x + x3/(2*3) + (1*3)x5/(2*4*5) + (1*3*5)x7/(2*4*6*7)…+(2k+1)!!*x2k+1/(2k!!*(2k+1))+…, x∈(-1,1)(!!表示双阶乘)[4]

arccos x = π/2 -[x + x3/(2*3) + (1*3)x5/(2*4*5) + (1*3*5)x7/(2*4*6*7)……], x∈(-1,1)

arctan x = x - x3/3 + x5/5 -…, x∈(-∞,1)

sinh x = x+x3/3!+x^/5!+…+x2k-1/(2k-1)!+…, x∈R

cosh x = 1+x2/2!+x^4/4!+…+x2k/(2k)!+…, x∈R

arcsinh x =x - x3/(2*3) + (1*3)x5/(2*4*5) -(1*3*5)x7/(2*4*6*7)…, x∈(-1,1)

arctanh x = x + x3/3 + x5/5 + …, x∈(-1,1)

在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。

傅里叶级数

傅里叶级数

傅里叶级数又称三角级数

f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)

a0=1/π∫(π..-π) (f(x))dx

an=1/π∫(π..-π) (f(x)cosnx)dx

bn=1/π∫(π..-π) (f(x)sinnx)dx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值