这是一个项目中遇到的实际需求。场景是一个智能仓库管理系统,场景里面有直线和曲线构成的环穿轨道。环穿轨道上面会有小车运动,后台推动小车的两个点位A和B,其中A和B都会在轨道上面,前端需要根据这两个推送点,自动播放小车从A点沿轨道到B点的动画。下面是项目截图:
项目中使用的是二次贝塞尔曲线,所以本文也主要以二次贝塞尔曲线为讲解重点。要实现上述动画,需要首先确定A点和B点在曲线上面的比例值ta和tb
最终的需求变成:“根据贝塞尔曲线上的点反算t值”。 大概有以下几种方法。现假设贝塞尔曲线上的点为点P(后续会用到该点)。
分片迭代
分片迭代是一种近似的方法。我们知道,二次贝塞尔曲线的公式如下:B(t) = (1-t)2 P0 + 2t(1-t) P1 + t2 * P2其中: $t in $[0,1],P0为二次贝塞尔曲线的起始点,P1为控制点,P2为终止点。
如果你对于上面的知识点不是很熟悉,建议学习贝塞尔曲线相关知识。推荐学习本人的专栏https://xiaozhuanlan.com/canvas, 里面有专门的章节对贝塞尔曲线进行了全面详细的讲解。本文也是从该专栏的文章中摘录并适当改编而成的。
从以上公式,我们可以得到,对于任意给定的比例值t,可以求出对应该比例值的点B(t)。分片迭代思路是:现在加设把范围[0,1]平均分成N(比如100)等份,形成一系列的比例值t,对于每一个t值,求取对应的点B(t) ,然后让点B(t)和已知在贝塞尔曲线上的点P进行比较,如果点B(t)和点P之间的直线距离在一定的误差范围之内,则认为B(t)等于P,而此时的t值,就是我们要求的t值。以下是主要代码:
function computeT(p0,p1,p2,p) { var t = 0; for(var i = 0;i < 1000;i ++){ var point = getPointOnQuadraticCurve(p0,p1,p2,t);//根据二次贝塞尔曲线公式求B(t),其中point = B(t) if(distance(point,p) < 0.01){ // 判断point和p点的距离是否在特定误差之内 return t; } t+= 0.001; } return null;}
上述分片迭代的方法,思路最简单,最直观。在精度要求不高的情况下是可以满足的。而在精度要求高的时候,即代码中的“特定误差”值要很小,可能会出现函数返回值为null的情况,在精度要求高的时候要能够计算出值,就要增加迭代次数,此时会极大增加性能消耗。比如上面代码的迭代次数可能会变成10000甚至10000。
迭代方法同样适用于三次贝塞尔曲线和更加高阶的贝塞尔曲线。
分片迭代优化版本
上面提到在精度要求高的情况下,要得到正确结果,要极大的增加迭代次数,造成性能的极大消耗。 有没有办法既提高精度,又不大量增加迭代次数呢? 经过笔者的思考,发现是可以的。想想假设要求的t值在0.5附近,那么我们只需要在0.5附近加大分片的数量,而不需要在其他地方(0.1~0.4,0.6~1.0)增加分片的数量。 应此升级版本的思路就是,先用比较粗的分片初步确定t值的一个大致范围,再在该范围之类,比较细的分片确定t值。注意这是个递归的过程,如果在第二次比较细的分片情况下,仍然不能确定t值,那么就确定一个t值的更小分范围;重复上面过程,直到找到t值为止。大致步骤如下:
- 首先,通过一个小的迭代次数进行分片迭代;
- 在迭代的过程中如果找到了符合的比例值t,直接返回;
- 在迭代的过程中同时记录离目标点P最近的t值,如果上一步未找到符合的t值,则进行下一步操作。
- 上一步找到了离目标点P最近的t值,在t值的附近(t - step,t + step)(其中step为上一次分片的步进值)进行分片迭代查找,在迭代的过程中如果找到了符合的比例值t,直接返回。
- 如果没找到,重复上面的不断缩小范围并加大分片精度的过程。 直到找到t值为止。
下面是示例代码:
function computeT(p0, p1, p2, p,startT = 0,endT = 1) { var t = startT; var minDistance = Infinity, minDistanceT = null; var step = (endT - startT) / 100; for (var i = 0; i < 100; i++) { var point = getPointOnQuadraticCurve(p0, p1, p2, t); var dst = distance(point,p); if (dst < minDistance) { minDistance = dst; minDistanceT = t; } if (dst < 0.0001) { return t; } t += step; } return computeT(p0, p1, p2, p, minDistanceT - step,minDistanceT + step);}
以上过程虽然增加了一定的迭代次数,但是是常量级别的增加,而非数量级别的增加,所以会极大提高性能。 比如目标t值在0.5附近,第一次通过100次迭代可以确定t值的范围在0.4 ~ 0.6之间;然后进行第二次迭代,第二次迭代此次数仍然为100次,假设确定t值的范围在0.51 ~ 0.53之间;然后进行第三次迭代,第三次迭代此次数仍然为100次,此时可以获取t值为0.516,可以看出最多值迭代了300次。 假设总共经过第N次迭代,每次迭代次数为M,才找到t值,那么总共的迭代次数是N * M。
该迭代方法同样适用于三次贝塞尔曲线和更加高阶的贝塞尔曲线。而且相对于未优化的版本,该方法的性能好了很多。是适合所有贝塞尔曲线的比较好的反算t值的方法。
二分法
二分法的思路是:
- 首先确定一个起始t值和结束t值t0和t1,初始值t0 = 0,t1 = 1。
- 取t0和t1的中间值tm = (t0+t1)/2
- 通过tm计算出点Pm,如果Pm和目标点P之间的距离在误差值范围之内,则tm为需要计算的目标t值。
- 如果上一步Pm和目标点P之间的距离不在误差值范围之内,则判断Pm和目标点P的前后顺序,如果Pm在目标点P的前面,则把tm赋值给t1;否则把tm赋值给t0。
- 重复以上步骤直到找到合适的tm值。
上述步骤有一个难点: 如何判断Pm和目标点P的前后顺序?对于二次贝塞尔曲线,如下图所示:
其中,P0为起始点,P2为终止点,P1为控制点。 二次贝塞尔曲线有如下特点:线段(P1,P0)、(P1,P2)和曲线相切,这也就意味着曲线一定在三角形(P0,P1,P2)之内,而且二次贝塞尔曲线本身不会自身相交,所有我们可以有如下结论,
对于曲线上面的点A,直线(P1,A)和线段(P0,P1)相交于点a;对于曲线上面的点B,直线(P1,B)和线段(P0,P1)相交于点b。点A和点B的先后顺序与点a和点b的先后顺序是一致的,而直线上面的点(a和b)的前后顺序是容易判断的。 也就是说如果点a在点b的前面,则点A也在点B的前面,反之亦然。如下图所示:
有了以上的结论,我们就找到了判断Pm和目标点P的前后顺序的方法。
如果你对上述结论不熟悉,建议学习贝塞尔曲线的相关知识,推荐学习本人的专栏https://xiaozhuanlan.com/canvas, 里面有专门的章节对贝塞尔曲线进行了全面详细的讲解。本文也是从该专栏的文章中摘录并适当改编而成的。
有了这个方法,加上前面描述的二分查找的步骤,可以得出示例代码如下:
function computeT2(p0,p1,p2,p,startT = 0,endT = 1) { var halfT = (startT + endT) / 2; var halfPoint = getPointOnQuadraticCurve(p0,p1,p2,halfT); if(distance(halfPoint,p) < 0.0001){ return halfT; } //求交点: var inter1 = segmentsIntr(p0,p2,p1,p); var inter2 = segmentsIntr(p0,p2,p1,halfPoint); var r1 = interpolationRate(p0,inter1,p2), r2 = interpolationRate(p0,inter2,p2); if(r1 > r2){ startT = halfT; }else { endT = halfT; } return computeT2(p0,p1,p2,p,startT,endT);}
解方程
前面说过,贝塞尔曲线的公式如下:B(t) = (1-t)2 P0 + 2t(1-t) P1 + t2 * P2其中: $t in $[0,1],P0为二次贝塞尔曲线的起始点,P1为控制点,P2为终止点。分别表示成x和y的方程,则可以表示如下:
- xP = (1-t)2 xP0 + 2t(1-t) xP1 + t2 * xP2
- yP = (1-t)2 yP0 + 2t(1-t) yP1 + t2 * yP2
实际上就是两个变量t的二次元方程,取上面任意一个方程,带入相关的值解方程,方程的解即为我们要求的目标t值。
整理方程: xP = (1-t)2 xP0 + 2t(1-t) xP1 + t2 * xP2,可以得出二次方程如下:(xP2 + xP0 - 2 xP1 ) t2 + 2(xP1 - xP0) t + (xP0 - xP) = 0。我们已知二次方程的: at2 + b t + c = 0的解为:
- 如果a = 0,则解为 -c/b
- 如果a != 0,解如下图所示:
应此令:
- a = (xP2 + xP0 - 2 * xP1 )
- b = 2*(xP1 - xP0)
- c = (xP0 - xP)
- 可以方便求出方程的解。
需要注意的是,二次方程的解可能会有两个。如果求出的解有两个怎么办呢。 首先我们知道贝塞尔曲线的t值的范围是$t in $[0,1],所以如果有两个解:
- 其中一个不再[0,1]的范围之内,则另外一个解就是目标t值。(注意不可能两个都不在[0,1]范围之内,因为我们知道,目标点P在贝塞尔曲线上面)。
- 如果两个解都在[0,1]范围之内,那就把两个解再带入贝塞尔曲线的公式,分别求出两个B(t)点,那个离目标点P近,就取那个解。
下面是示例代码,其中函数equation2用于解曲线的方程:
function computeT(p0,p1,p2,p) { let interpolationx = (p1.x - p0.x) / (p2.x - p0.x); let tt; if(interpolationx >= 0 && interpolationx <= 1){ let ty = equation2(p0.y,p1.y,p2.y,p.y); return ty; }else{ tt = equation2(p0.x,p1.x,p2.x,p.x); if(tt.tt1){ var pointTest = getPointOnQuadraticCurve(p0,p1,p2,tt.tt1); if(distance(pointTest,p) < 0.01){ return tt.tt1; }else{ return tt.tt2; } }else{ return tt; } }}function equation2(z0,z1,z2,zp){ // z0、z1,z2代表P0、P1、P2的x坐标值或者y坐标值,zp代表目标点P的x坐标值或者y坐标值 var a = z0 - z1 * 2 + z2, b = 2*(z1 - z0), c = z0 - zp; var tt = null; if(a == 0 && b != 0){ tt = - c / b; } else { var sq = Math.sqrt( b * b - 4 * a * c ); var tt1 = (sq - b)/ (2 * a), tt2 = (-sq - b) / (2 * a); // console.log("tt1,tt2: