该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
组成与原理:
模拟计算机一般由运算器、控制器、显示设备、电源等四大部分组成,
它使用电流、电压等物理量模拟实际问题中的变量,通过构造一个与要求
解问题有相同数学方程的物理电路,测量物理电路中与要求解的值相对应
的物理量的方法,求出问题的解。它一般用电压对应要求解的变量,通过
构造一个对电压进行各种变换的电路,使得输出电压代表问题的解,这个
解通过显示设备转换成曲线图提供给使用者,它可能是一个数值而表现为
一条直线,也可能是一条随时间变化的曲线,这表明模拟计算机不以数值
计算为特长,而以方程求解为核心功能。除了能求出曲线外,它也可以模
拟动态过程,通过设置中断测量动态过程中某一时刻各物理量的瞬时值,
观察动态过程中某一个瞬间的状态。这种计算方式的好处是速度快,对静
态计算只要能构造出电路来,不论运算过程多复杂,通电以后不久,当电 路达到稳定状态后,计算结果就出来了;缺点是构造电路的过程复杂,计
算结果的精度比较受限制。
模拟计算机的主要部件是运算器,运算器可以实现各种不同的函数变
换,如加、减、乘、除、乘方、开方、微分、积分等运算,其中积分器是
最重要的一种运算设备,它是解微分方程必不可少的,而微分方程可以用
来表示绝大多数物理问题的数学模型,所以用数学模型分析实际问题常常
就归结为解某一类特殊的微分方程问题。一般来说微分方程在很特殊的情
况下才能求出解析形式的解,多数情况下把微分方程解出来再根据解的图
形对实际问题进行分析是很困难的事,这时模拟计算机就有了用武之地,
它可以通过某些量如电压与微分方程解的对应关系直接画出解的图形来,
从而不用知道微分方程解的解析形式也能得到它的大致图形,可以进一步
去推知实际问题的一些性质。由于积分器在解微分方程中的重要性,它的
数量成为衡量模拟计算机的一个重要指标,一台模拟计算机有几个积分器,
在充足的其他运算部件的支持下就可以解几阶的微分方程,所以积分器的
个数又叫做模拟机的阶数。
通用模拟计算机一般把所有运算器的输入端与输出端统一集中在一块
排题板上,通过在这块排题板上布线把不同的基本运算器对接构造一个具
体问题的解法电路,线路排好以后再设置合适的初始电压和其他信号,按
启动按钮,机器就会自动运算,一直到计算结果出来自动停机。排题过程
是使用这种计算机的难点,对复杂的问题要先在纸上设计出排题图,再搬
到排题板上去。