速率法和终点法的区别_速率法,终点法

山雨旅人

速率法和终点法的区分表象上是体现在反应曲线上,速率法呈现稳速上升或稳速下降,通常是这样的曲线:

下图1:典型下降速率法曲线1,项目AST(其中蓝线为主波长反应过程,绿线为副波长反应过程,黑线为主波-副波的反应过程,主-副用于仪器计算结果。)

下图2:典型上升速率法曲线2,项目TBA

而终点法则是曲线在终点逐渐平稳趋于某个OD值的曲线,通常是这样的:

下图3:典型下降终点法曲线3,项目TBIL

下图4:典型上升终点法曲线4,项目ApoB。(可能并没有UA、GLU等项目那么典型,黑线已经呈现出趋平了)

但这些只是表象,由于受到试剂反应速度,反应副产物的影响,还会出现一些不典型的曲线,比如说Ca、Mg等终点法试剂,由于加入试剂2后反应十分快,就有点像水平很低的速率法曲线;部分胶乳增强免疫比浊法试剂,直到反应结束都没有一点点趋平的趋势,而是一直呈类似速率法上升曲线;而部分速率法试剂由于加入试剂2后需要一段稳定时间,起初是缓慢上升或快速上升,后段才趋于匀速,再加上底物耗尽现象,这又会很像终点法试剂。我没有那么多例图,就不一一举出了,多看多分析就能够了解到。

实质上,速率法和终点法本质的区别在于反应原理:前者多是酶类为主体,酶学反应通常会以一定速率消耗底物,因此生化上常以某底物的消耗(降)或者某产物的生成(升)作为反应标志,对反应体系通过不同波长的光以测定反应标志的变化。比如:ALT、AST、ALP、GGT、CK、CKMB、TBA、HBDH等。后者则多是直接以待测物质或者待测物质参与反应的产物为主体,为检测主体全部的量需要主体消耗完全或产物全部生成。以待测物质的消耗量(降)或者某产物的生成量(升)为反应标志,对反应体系通过不同波长的光以测定反应标志的变化。比如UA、CRE、GLU、ApoA1、β2MG等。

因此,肌酐试剂在***法试剂中使用速率法测试,在氧化酶法试剂中则使用终点法测试。

部分不典型的项目,比如CO2的PEP-C法试剂,由于反应过程中检测的是NADH消耗,其生成过程为酶学反应,底物HCO3-能影响其反应速率,因此既可以用终点法,又可以用速率法,曲线也并不典型;又比如部分胶乳比浊法试剂(各厂家各有千秋),尽管在反应时间内常不能达到趋平,但考虑到抗原抗体结合反应的复杂性(前带、后带效应等)一般认为终点法更具有科学性。

总的来说,终点法、速率法都只是测试方式,关键还在于了解试剂原理,熟悉试剂的反应过程,那样才有利于通过反应曲线对测试结果进行判断。

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划精细管理,提高监管效率质量。例如,通过实时监控数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展发展趋势;②掌握DeepSeek在不同领域的具体应用场景操作方;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性数据安全问题,鼓励读者关注技术的持续改进发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值