题意
就是给你一个序列,每次可以做一个这样的操作,可以把一段连续k个数都-1,然后再k个数不变,然后2k是一个循环节一直下去,(这里只要对每个操作确定一个2k的循环节就好了,不用管每次从循环节哪里开始那里结束)问至少操作多少次可以变成所有数都是相同的?每次的操作的k是2的幂,且上界为D
分析
首先考虑n是2的幂的情况
就是把这个序列变成一个环,然后区间-1,我们可以先差分,操作变成一个位置-1,一个位置+1
然后你把这个环画一个对称轴,那么相对的位置进行上述操作,然后变成相对的位置对应相等,然后就可以把这个环给缩成一半
对于n不是2的幂的,把后缀看看和前缀是否相同就好了
然后还要判断一下减的时候会不会减到负数
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL N = 5010;
inline LL read()
{
LL p=0; LL f=1; char ch=getchar();
while(ch<'0' || ch>'9'){if(ch=='-') f=-1; ch=getchar();}
while(ch>='0' && ch<='9'){p=p*10+ch-'0'; ch=getchar();}
return p*f;
}
LL n,d,a[N],h[N];
int main()
{
LL t = read();
for(LL Tcase=1;Tcase<=t;Tcase++)
{
printf("Case #%lld: ",Tcase);
n = read(); d = read(); d<<=1; bool bk = 1;
LL sum = 0; for(LL i=1;i<=n;i++) a[i] = read();
for(LL i=1;i<=n;i++) for(LL j=i;j<=n;j+=d) if(a[i] != a[j]){bk = 0;}
n = d; h[1] = a[1] - a[n]; for(LL i=2;i<=n;i++) h[i] = a[i] - a[i-1];
sum = 0; for(int i=1;i<=n;i++) sum += a[i];
if(!bk){printf("CHEATERS!\n"); continue;}
LL ans = 0;
for(LL i=d/2;i>=1;i>>=1)
{
for(LL j=1;j<=i;j++)
{
LL s = abs(h[j] - h[j+i]);
if(s&1){bk = 0; break;}
else
{
if(h[j] < h[j+i]) h[j] += s/2,h[j+i] -= s/2;
else h[j] -= s/2,h[j+i] += s/2;
ans+=s/2; sum -= s/2 * n/2;
}
}
if(!bk) break;
}
if(!bk || sum < 0){printf("CHEATERS!\n"); continue;}
else printf("%lld\n",ans);
}
return 0;
}